Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MNPB có
MN//BP
MB//NP
Do đó: MNPB là hình bình hành
a: Xét tứ giác MNPB có
MN//PB
MB//NP
Do đó: MNPB là hình bình hành
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
a: Xét tứ giác MNCP có
MP//CN
MN//CP
Do đó: MNCP là hình bình hành
giải :
Xét tam giác ABC cân tại A có:
góc ABC = góc ACB (t/c)
mà góc MIB = góc ACB ( 2 góc đồng vị do MI//AC)
=> góc ABC = góc MIB
hay góc MBI = góc MIB => tam giác MIB cân tại M ( dấu hiệu nhận biết)
=> MB=MI ( t/c)
Mà MB= CN (gt)
=> MI=CN
Xét tứ giác MINC có
MI// CN (gt)
MI = CN (cmt)
=> tứ giác MINC là hình bình hành ( dấu hiệu nhận biết)
Xét hình bình hành MINC có
MN giao với IC tại O (gt)
=> O là trung điểm của MN(t/c)
=> OM= ON
Vậy OM=ON
a) Xét tứ giác MNEB có:
NE//BM(gt)(do NE//AB, \(M\in AB\))
MN//BE(do MN//BC, \(E\in BC\))
=> Tứ giác MNEB là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}MN=BE\\BM=NE\end{matrix}\right.\)
b) Xét tam giác ABC có:
MN//BC(gt)
Mà M là trung điểm AB(gt)
=> N là trung điểm của AC