Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta DAM\) và \(\Delta BAC\) có :
Ma = MB ( gt )
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
MA = MC ( gt )
=> \(\Delta DAM\)=\(\Delta BAC\) ( c . g . c)
=> BA = BC , \(\widehat{D_1}=\widehat{C_1}\)
Mà \(\widehat{D_1};\widehat{C_1}\) là 2 góc so le trong
=> AD // BC .
C/m tương tự ta có :
AE = BC ; AE // BC
Dễ thấy : Qua 2 tồn tại 2 đường thẳng cùng song song với BC . Theo tiên đề ơ - clit
=> Hai dường thẳng đó trùng nhau .
=> D ' A ' E thẳng hàng .
Mà DA = AE ( = BC )
=> A là trung điểm của DE
Xét ΔABC có: AB=AC(gt)
=> ΔABC cân tại A
=>^B=^C
Xét ΔAMB và ΔAMC có:
AB=AC(gt)
^B=^C(cmt)
MB=MC(gt)
=> ΔAMB =ΔAMC( c.g.c)
=> ^AMB=^AMC
Mà ^AMB+^AMC=180( cặp góc kề bù)
=> ^AMB=^AMC=90
=>AM\(\perp\) BC
a,AD ĐL pytago vào \(\Delta ABC\)vuông tại A có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=10^2-6^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
Xét \(\Delta BCD\)có: A là trung điểm của BD
K là trung điểm của BC
AC giao DK tại M
=>M là trọng tâm của \(\Delta BCD\)
\(\Rightarrow MC=\frac{2}{3}AC=\frac{2}{3}.8=5,3\left(cm\right)\)
b.Ta có:\(AB< AC< BC\)
\(\Rightarrow\widehat{BAC}>\widehat{ABC}>\widehat{ACB}\)
c.Ta có:\(\widehat{A}=90^o\)và A là trung điểm của BD
=>AC là đường trung trưc của BD
=>CB=CD
=>\(\Delta BCD\)cân tại C
d. bạn tự cm \(\Delta ABC=\Delta ADC\left(c.g.c\right)\)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)(2 g.t.ư) (1)
Q là ttruc của AC=>QA=QC
=> tg AQC cân tại Q
=>\(\widehat{A_1}=\widehat{C_1}\)(2)
Từ (1) và (2)=>\(\widehat{C_1}=\widehat{A_1}\)
Mà 2 góc này ở VT SLT=>AQ//BC(3)
Lại có:A là trung điểm của BD(4)
Từ (3) và (4) => AQ là đường trb của tg BCD
=>Q là tđ củaDC
=>BQ là đường ttuyen của tgBCD
Mà M là trọng tâm của tg BCD
=> thẳng hàng
Xét `\triangle AMB` và `\triangle AMC` có:
`{:(AB=AC),(MB=MC),(AM\text{ là cạnh chung}):}}=>`
`=>\triangle AMB =\triangle AMC` (c-c-)
`=>\hat{BAM}=\hat{CAM}`
`=>AM` là tia phân giác của `\hat{BAC}`