Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác AMH và tam giác AMK có
góc AHM = góc AKM ( = 90 độ)
chung AM
góc HAM = góc MAK ( AM là phân giác góc A)
=> tam giác AMH = tam giác AMK ( ch - gn)
=> MH = MK (cạnh tương ứng)
b)
tam giác ABC có AM vừa là trung tuyến đồng thời là phân giác góc A
=> tam giác ABC cân tại A (dhnb) => góc B = góc C (tc tam giác cân)
a) tam giác AMH và tam giác AMK có
góc AHM = góc AKM ( = 90 độ)
chung AM
góc HAM = góc MAK ( AM là phân giác góc A)
=> tam giác AMH = tam giác AMK ( ch - gn)
=> MH = MK (cạnh tương ứng)
b)
tam giác ABC có AM vừa là trung tuyến đồng thời là phân giác góc A
=> tam giác ABC cân tại A (dhnb) => góc B = góc C (tc tam giác cân)
a:
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
b: Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
Suy ra: \(\widehat{B}=\widehat{C}\)
a)+)Xét 2 tam giác vuông : tam giác AHM và tam giác AKM có:
góc HAM = góc KAM (vì AM là tia phân giác của góc A)
AM là canhj chung
=>tam giác HAM =tam giác KAM (cạnh huyền -góc nhọn)
=>MH=MK(2 cạnh tương ứng)
b)Xét 2 tam giác vuông: tam giác HMB và tam giác KMC có:
MB=MC (vì M là trung điểm của BC)
MH=MK (theo câu a)
=>tam giác HMB= tam giác KMC (cạnh huyền -cạnh góc vuông)
=>góc B =góc C ( 2 góc tương ứng) (đpcm)
Giải :
Xét tam giác AHM vuông tại H và tam giác AKM vuông tại K , có :
+ góc HAM = góc KAM (vì AM là tia phân giác của góc BAC )
+ AM : cạnh chung
Nên tam giác AHM = tam giác AKM (cạnh huyền - góc nhọn)
=> MH = MK (hai cạnh tương ứng )
b, Xét tam giác BHM vuông tại H và tam giác CKM vuông tại K, có:
+ MH = MK (theo câu a)
+ BM = CM (M là trung điểm của BC )
Nên tam giác BHM = tam giác CKM (cạnh huyền - cạnh góc vuông)
=> góc B = góc C (hai góc tương ứng )
Xét hai tam giác vuông AHM và AKM, ta có:
∠(AHM) =∠(AKM) =90o
Cạnh huyền AM chung
∠(HAM) =∠(KAM) (gt)
⇒ ΔAHM= ΔAKM (cạnh huyền, góc nhọn)
Suy ra: MH = MK (hai cạnh tương ứng)
Xét hai tam giác vuông MHB và MKC, ta có:
∠(MHB) =∠(MKC) =90o
MH = MK (chứng minh trên)
MC = MB (gt)
⇒ ΔMHB= ΔMKC (cạnh huyền- cạnh góc vuông)
Suy ra ∠B =∠C (hai góc tương ứng)
A)do AM là tia phân giác của ^A
\(\Rightarrow\)MH=MK(tính chất tia phân giác)
b)theo bài ra M là trung điểm của BC nên AM vừa là phân giác vừa là trung tuyến của tam giác ABC
Suy ra \(\Delta ABC\)cân tại A\(\Leftrightarrow\)góc B =góc C
A B M C H K
a) Xết hai tam giác vuông AMH và AMK có:
AM: cạnh huyền chung
\(\widehat{HAM}=\widehat{KAM}\left(gt\right)\)
Vậy: \(\Delta AMH=\Delta AMK\left(ch-gn\right)\)
Suy ra: MH = MK (hai cạnh tương ứng)
b) Xét hai tam giác vuông MHB và MKC có:
MB = MC (gt)
MH = MK (cmt)
Vậy: \(\Delta MHB=\Delta MKC\left(ch-cgv\right)\)
Suy ra: \(\widehat{B}=\widehat{C}\) (hai góc tương ứng).
Xét tam giác HMA vuông tại H và tam giác KMA vuông tại K có:
AM là cạnh chung
MAH = MAK (AM là tia phân giác của A)
=> Tam giác HMA = Tam giác KMA (cạnh huyền - góc nhọn)
=> MH = MK (2 cạnh tương ứng)
Xét tam giác HBM vuông tại H và tam giác KCM vuông tại K có:
MH = MK
BM = CM (M là trung điểm của BC)
=> Tam giác HBM = Tam giác KCM (cạnh huyền - cạnh góc vuông)
=> B = C (2 cạnh tương ứng)
=> Góc B = góc C ( 2 góc tương ứng ) chứ bnPhương An