K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hbh

=>AB=CD và AB//CD
b: AB//CD

AB vuông góc AC

=>CD vuông góc AC

c: ABCD là hbh

=>BC//AD

29 tháng 12 2021

b: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB//CD

a: Xét tứ giác ABCD có

m là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC

b: ABCD là hình bình hành

=>AB//CD
=>CD vuông góc AC

c: Xét tứ giác ABNC có

AB//NC

AC//BN

=>ABNC là hình bình hành

=>BN=AC; AB=NC

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=CN

=>ΔBAM=ΔNCM

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>DC\(\perp\)AC

mà AC\(\perp\)AB

nên AB//DC

c: ΔMAB=ΔMCD

=>AB=CD

Xét ΔKAB và ΔKEC có

KA=KE

\(\widehat{AKB}=\widehat{EKC}\)

KB=KC

Do đó: ΔKAB=ΔKEC

=>AB=EC 

ΔKAB=ΔKEC

=>\(\widehat{KAB}=\widehat{KEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

AB//EC

AB//CD

CD,EC có điểm chung là C

Do đó: E,C,D thẳng hàng

AB=EC

AB=CD

Do đó: EC=CD

Ta có: E,C,D thẳng hàng

EC=CD

Do đó: C là trung điểm của ED

26 tháng 12 2018

nè 

) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

a) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

c) .................