Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A X B C D M
a) Xét ΔAMB và ΔDMC có:
AM = DM ( gt )
góc AMB = DMC ( đối đỉnh)
MB = MC ( suy từ gt )
=> ΔAMB = ΔDMC ( c.g.c )
b) Xét ΔAMC và ΔDMB có:
AM = DM (GT)
AMC = DMB ( đối đỉnh )
MC = MB (SUY TỪ GT)
=> ΔAMC = ΔDMB ( c.g.c )
=> góc ACM = MBD ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong nên AC // BD
c) Do Ax // BC nên góc HAC = ACB ( so le trong )
Xét ΔHAC và ΔBCA có:
AH = BC (gt)
góc HAC = ACB ( CM TRÊN)
AC chung
=> ΔHAC = ΔBCA (c.g.c)
=> góc HCA = CAB ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AB // HC (1)
Theo câu a ΔAMB = ΔDMC nên góc ABM = MCD ( 2 góc tương ứng )
mà 2 góc ở này ở vị trí so le trong nên AB // CD (2)
Từ (1) và (2) suy ra H, C, D thẳng hàng → đpcm
Chúc học tốt nguyễn ngọc trang
Bạn giỏi quá! Mình đi đúng hướng rồi mà đoạn sau cũng không nghĩ ra lun.
Khâm phục!
A B C D H M
Xét tam giác AMB và tan giác DMC ta có
AM= MD (gt)
BM=MC ( M là trung điểm BC)
góc AMB = góc DMC ( 2 góc đối đỉnh)
-> tam giác AMB= tam giac DMC (c-g-c)
b>
Xét tam giác AMC và tan giác DMB ta có
AM= MD (gt)
CM=MB ( M là trung điểm BC)
góc AMC = góc DMB ( 2 góc đối đỉnh)
-> tam giác AMC = tam giac DMB (c-g-c)
-< góc MAC= góc MDB ( 2 góc tương ứng)
mà 2 góc ở vi trí sole trong nên AC//BD
c)ta có
góc MAB= góc MDC (tam giac AMB=tam giác DMC)
mà 2 góc ở ví trí sole trong
nên AB//CD
Xét tam giác ABC và tam giác CHA ta có
AC=AC ( cạnh chung)
BC=AH (gt)
góc ACB= góc CAH ( 2 góc sole trong và AH//BC)
-> tam giac ABC= tam giác CHA(c-g-c)
-> góc BAC = góc ACH (2 góc tương ứng)
mà 2goc nằm ở vi trí sole trong
nên AB//CH
ta có
AB//CH (cmt)
AB//DC (cmt)
-> CH trùng DC
-> C,H,D thang hàng
cho tam giác ABC. M là trung điểm BC. MA và MD đối nhau và MA=MD. H là trung điểm AB, K là trung điểm CD.
a, CM tam giác ABM = tam giác DCM
b, CM AB=CD và AB//CD
c, cho góc BAC = 75 độ. Tính góc ACD
d,CM M là trung điểm HK
mong các bạn giải bài này hộ mình, mình đag cần gấp..thứ 2 mình kiểm tra rồi! Thanks all <3
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a, xét tam giác AMB và tam giác DMC có: góc AMB= góc DMC(đối đỉnh)
BM=MC(gt)
MA=DM(gt)
suy ra tam giác AMB= tam giác DMC
xét tam giác AED có: BD=BE(gt)
AM=MD(gt)
suy ra BM là đường trung bình của tam giác DAE
suy ra bm=1/2AE hay AE=2BM