Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và ED=BC/2(1)
Xét ΔGBC có
M là trung điểm của BG
N là trung điểm của CG
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và MN=BC/2(2)
Từ (1) và (2) suy ra MN//DE và MN=DE
hay MNDE là hình bình hành
Hình tự vẽ
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )
Bài làm
a) Xét tam giác ABC có:
E là trung điểm của AB ( do CE trung tuyến )
D là trung điểm của AC ( Do BD trung tuyến )
=> ED là đường trung bình
=> ED = 1/2 BC và ED // BC (1)
Xét tam giác GBC có:
M là trung điểm BG ( gt )
N là trung điểm GC ( gt )
=> MN là đường trung bình.
=> MN = 1/2 BC và MN // BC (2)
Từ (1) và (2) => MN = ED và MN // ED
Xét tứ giác MNDE có:
MN = ED
MN // ED
=> MNDE là hình bình hành.
b) Để MNDE là hình chữ nhật
<=> ME | MN
Giả sử tam giác ABC cân tại A
Nối AG
Xét tam giác ABG có:
E là trung điểm AB
M là trung điểm BG
=> ME là đường trung bình.
=> ME = 1/2 AG và ME // AG
Vì CE và BD ;à đường trung tuyến và cắt nhau tại G
=> G là giao điểm của 3 đường trung tuyến của tam giác ABC
=> AG là đường trung tuyến
Mà tam giác ABC cân ( theo giả sử )
=> AG vuông góc với BC
Hay AG cũng vuông góc với MN ( do BC // MN ở câu a )
Mà ME // AG
=> MN vuông góc với ME
Mà MNDE là hình bình hành
=> MNDE là hình chữ nhật.
cứ thế tự chứng minh là hình thoi rồi sẽ ra hình vuông nha. vì chỗ này dễ rồi. nên mik k chứng minh.
c) Vì MN = 1/2 BC ( cmt )
DE = 1/2 BC ( cmt )
=> MN + DE = 1/2 + BC + 1/2 BC = BC ( 1/2 + 1/2 ) = BC . 2/2 = BC . 1 = BC
=> MN + DE = BC ( đpcm )
# Học tốt #
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hbh
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBAC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
M là trung điểm của GB
N là trung điểm của GC
Do đó: MN là đường trung bình của ΔGBC
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra ED//MN và ED=MN
hay MNDE là hình bình hành
TL:
a,Glà trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
^HT^