K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

-Sửa đề: △ABC cân tại A mà AH là trung tuyến \(\Rightarrow\)AH là đg cao 

\(\Rightarrow\)AH⊥BC tại H.

-Gọi D là trung điểm CE.

-△CEH có: OD là đg trung bình \(\Rightarrow\)OD//CH \(\Rightarrow\)OD⊥AH.

-△BCE có: HD là đg trung bình \(\Rightarrow\)HD//BE.

-△AHD có: 2 đg cao HE và DO cắt nhau tại O.

\(\Rightarrow\)O là trực tâm △AHD.

\(\Rightarrow\)AO⊥HD nên AO⊥BE.

 

a: Xét tứ giác AEHD có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

a: Xét tứ giác AEHD có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

a: Xét tứ giác AEHD có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

5 tháng 1 2020

A B C I H D E O K

Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)

=> ADHE là hình chữ nhật

đt DE cắt đt AH tại O

=> OA = OE

b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)

Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)

           t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)

=> \(\widehat{B}=\widehat{HAC}\) 

mà \(\widehat{HAC}=\widehat{DEA}\) 

=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)

c) Gọi K là giao điểm của AI và DE

Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)

=> AI = IB = IC = 1/2BC

=> t/giác AIC cân tại I

=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) 

mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)

=> \(\widehat{KAE}+\widehat{KEA}=90^0\)

Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)

=> AI \(\perp\)DE

5 tháng 1 2020

a) Xét tứ giác ADHE 

Ta có: góc A=900(gt)

góc ADH=900(gt)

góc EHD=900(gt)

=>tứ giác ADHE là hcn

=>AH=DE(đpcm)

12 tháng 5 2022

-HE⊥AB tại E, AB⊥AC tại A nên HE//AB

-CM cắt AB tại D.

△BDC có: HI//BD \(\Rightarrow\dfrac{HI}{BD}=\dfrac{CI}{CD}\).

△ACD có: IE//AD \(\Rightarrow\dfrac{EI}{AD}=\dfrac{CI}{CD}=\dfrac{HI}{BD}\Rightarrow\dfrac{EI}{AD}=\dfrac{HI}{BD}=\dfrac{EI+HI}{AD+BD}=\dfrac{EH}{AB}\left(1\right)\)

△HMI có: HI//AD \(\Rightarrow\dfrac{HI}{AD}=\dfrac{MI}{MD}\).

△IEM có: EI//BD \(\Rightarrow\dfrac{EI}{BD}=\dfrac{MI}{MD}=\dfrac{HI}{AD}\Rightarrow\dfrac{EI}{BD}=\dfrac{HI}{AD}=\dfrac{EI+HI}{BD+AD}=\dfrac{EC}{AC}\left(2\right)\)

-Từ (1), (2) suy ra \(\dfrac{HI}{AD}=\dfrac{EI}{AD}\Rightarrow HI=EI\Rightarrow\)I là trung điểm HE