K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

Hình bạn tự vẽ nhé. 

Ta có: B' là điểm đối xứng của B qua O( tâm đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow BB'\) là đường kính của đường tròn ngoại tiếp tam giác ABC \(\Rightarrow\Lambda BAB'\) và \(\Lambda BCB'\) là góc chắn nửa đường tròn ( đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'\perp AB\\B'C\perp BC\end{matrix}\right.\) Mà \(\left\{{}\begin{matrix}HC\perp AB\\AH\perp BC\end{matrix}\right.\) ( do H là trực tâm của tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'//HC\\AH//B'C\end{matrix}\right.\) \(\Rightarrow\) AB'CH là hình bình hành \(\Rightarrow\left\{{}\begin{matrix}AH//B'C\\AH=B'C\end{matrix}\right.\) \(\Rightarrowđpcm\)

Xét (O) có

ΔB'AB nội tiếp

BB' là đường kính

Do đó: ΔB'AB vuông tại A

Suy ra: B'A\(\perp\)BA

hay CH//A'B'

Xét (O) có

ΔB'CB nội tiếp

BB' là đường kính

Do đó: ΔB'CB vuông tại C

=>B'C\(\perp\)BC

hay B'C//AH

Xét tứ giác AHCB' có

AH//CB'

AB'//CH

Do đó:AHCB' là hình bình hành

Suy ra: \(\overrightarrow{AH}=\overrightarrow{B'C}\)

Xét (O) có

ΔB'AB nội tiếp

BB' là đường kính

Do đó: ΔB'AB vuông tại A

Suy ra: B'A\(\perp\)BA

hay CH//A'B'

Xét (O) có

ΔB'CB nội tiếp

BB' là đường kính

Do đó: ΔB'CB vuông tại C

=>B'C\(\perp\)BC

hay B'C//AH

Xét tứ giác AHCB' có

AH//CB'

AB'//CH

Do đó:AHCB' là hình bình hành

Suy ra: \(\overrightarrow{AH}=\overrightarrow{B'C}\)

18 tháng 10 2021

undefined

4 tháng 8 2019

A B C H B' O

Xét B thuộc đường tròn (O), B' đối xứng với B qua O => BB' là đường kính của (O)

=> AB' vuông góc AB. Mà CH vuông góc AB nên AB' // CH. Tương tự AH // B'C

Suy ra tứ giác AHCB' là hình bình hành => AH // B'C và AH = B'C => \(\overrightarrow{AH}=\overrightarrow{B'C}\)(đpcm).

20 tháng 8 2017

16 tháng 8 2016

jup mk vs cac tinh yeu oileuleuoe

30 tháng 8 2016

Mình chẳng biết M ở đâu nữa =))