Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
c: BH=CH=3cm
AH=căn 5^2-3^2=4cm
a) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
\(\widehat{ABH}=\widehat{DBH}\)(BH là tia phân giác của \(\widehat{ABD}\))
Do đó: ΔBAH=ΔBDH(cạnh huyền-góc nhọn)
b) Ta có: ΔBAH=ΔBDH(cmt)
nên BA=BD(hai cạnh tương ứng) và HA=HD(Hai cạnh tương ứng)
Ta có: BA=BD(cmt)
nên B nằm trên đường trung trực của AD(1)
Ta có: HA=HD(cmt)
nên H nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BH là đường trung trực của AD
a) .
Xét tam giác ABH và tam giác MBH có :
AB = BH(BE là tia phân giác)
góc ABH = góc HBM(BE là tia phân giác)
BH cạnh chung
đo đó : tam giác ABH = tam giác MBH (c.g c) (1)
b)
Từ (1) suy ra:
tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực của đoạn thẳng AM
Tam giác ABC có H là trực tâm nên:
a) \(AH \bot BC\);
b) \(BH \bot AC\);
c) \(CH \bot AC\).