Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B D E 30
Tam giác ABC vuông tại C có góc A = 300
=> AC = 2.CD => CD = 5
Áp dụng Pytagota có:
AD2 +CD2 = AC2
=> AD2 = AC2 - CD2 = 75
=> \(AD=5\sqrt{3}\)
Tam giác AED vuông tại E có góc A = 300
=> AD = 2.ED =>
=> \(ED=\frac{5\sqrt{3}}{2}\)
Áp dụng Pytago ta có:
\(AE^2+ED^2=AD^2\)
=> \(AE^2=AD^2-ED^2=56,25\)
=> \(AE=7,5\)
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
tu ke hinh :
a, xet tam giac ABD va tam giac HBD co : BD chung
goc ABD = goc HBD do BD la phan giac cua goc ABC (gt)
goc BAC = goc DHB = 90 do dau tu ma tim
=> tam giac ABD = tam giac HBD (ch - gn)
b,
+ AB _|_ AC do tam giac ABC vuong (gt) (1)
EI _|_ AC (gt) (2)
=> EI // AB (dl)
BI _|_ AB (gt) (3)
=> IB _|_ EI (dl) (4)
(1)(2)(3)(4) => EIBA la hinh chu nhat (dn)
co AB = EA (gt)
=> EIBA la hinh vuong (dn)
=> AB = AE = EI = IB (dn)
+ co tam giac ABD = tam giac HBD (Cau a) => BH = AB (dn)
=> AB = AE = EI = IB = BH (tcbc)
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Xét tam giác ABC ta có : \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
=> \(\widehat{ABC}=60^o\)
Xét tam giác BCD ta có \(\widehat{BCD}+\widehat{CBD}+\widehat{BDC}=180^o\)
=> \(\widehat{BCD}=30^o\)
Ta có : \(\widehat{ACD}+\widehat{BCD}=90^o\)=> \(\widehat{ACD}=60^o\)
Xét tam giác CDE có \(\hept{\begin{cases}\widehat{CED}=90^o\\\widehat{DCE}=60^o\end{cases}}\)
=> Tam giác CDE nửa đều => CE = 1/2.CD (1)
Xét tam giác ACD có \(\hept{\begin{cases}\widehat{ADC}=90^o\\\widehat{ACD}=60^o\end{cases}}\)
=> Tam giác ACD nửa đều => CD = 1/2.AC (2)
Từ (1) và (2) => CE = 1/4.AC
=> AE = 3/4.AC => AE = 7,5 ( cm )
Vậy AE = 7,5 cm