K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

cho tam giác abc có góc c = 50 độ góc a = 100 độ trên cạnh ab lấy m sao cho am=ac kẻ ah vuông góc vs bc ak vuông góc vs mc chứng minh cm=ab hk//ac

24 tháng 4 2019

a) tam giác abc có a+b+c=180'
               hay  80+b+c=180

                       b+c=100
          mà b=c(tam giác abc cân tại a)

             => b=c=50

b)Xét tam giác abd và aec có

ab=ac(gt)

góc b=góc c(gt)

bd=ec(gt)

do đó,abd=ace  (c-g-c)

=> ad=ae (2 cạnh tương ứng)

=>tam giác ade cân tại a
 

8 tháng 5 2022

bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:

 

8 tháng 5 2022

nếu là vuông tại A thì có:

a.Xét tam giác ABC vuông tại A:

BC2=AB2+AC2(định lí pytago)

hay   BC2=62+82

        BC2=36+64

        BC2= \(\sqrt{100}\)

        BC=10(cm)

vậy BC=10cm

Xét ΔABC và ΔACM có:

AB=AM(gt)

AC chung

^CAB=^CAM=90o

=>ΔABC=ΔACM(trường hợp gì tự biết)   :)

 

8 tháng 5 2022

Giúp với tớ cần gấp

 

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

19 tháng 5 2021

△ABC vuông tại A theo ĐL Py Ta Go ta có BC\(^2\)=AB\(^2\)+AC\(^2\)=6\(^2\)+8\(^2\)=100.Vậy BC=100cm

 

19 tháng 5 2021

b,ta có MT//AB=>BAC=MTC=90△ABC vuông tai A =>ABC+ACB= 90 △MTC vuông tại T=>TMC +ACB = 90 =>ABC = TMC(2) △AHB và △CTM có ABC = TMC (theo(2)) AB = MC (gt) AHB = CTM = 90 =>△ABC =△TMC (CH-GN) =>CT=AH