Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ hình ra nha
ta có:ˆAFEAFE^ là góc ngoài tam giác AFB tại đỉnh F
⇒ˆAFE=ˆFAB+ˆABF⇒AFE^=FAB^+ABF^
TA CÓ: GÓC FAB =20độ
góc ABF= 10 độ do BE là phân giác của góc ABC
⇒ˆAFE=20O+10O=30O⇒AFE^=20O+10O=30O
Ta có: ˆBAF+ˆFAE=ˆBACBAF^+FAE^=BAC^
TA cũng có: ˆBAF=20O(GIẢTHUYET)BAF^=20O(GIẢTHUYET)
ˆBAC=50OBAC^=50O
=> ˆFAE=50O−200=30OFAE^=50O−200=30O
xét tam giác FAE có 2 góc ở đáy cùng bằng 30 độ
=> tam giác FAE cân tại E
Bạn đọc lai đề coi có sai chỗ nào không ạ, mình vẽ hình thì nó không vuông góc
Ta có góc CEB là góc ngoài của tam giác AEB
nên \(\widehat{CEB}=50^{^0}+10^0=60^0\)
góc EFA là góc ngoài của tam giác AFB tại đỉnh F
nên \(\widehat{EFA}=20^{0^{ }}+10^{0^{ }}=30^0\)
suy ra góc EAF = góc EFA = 300
suy ta tam giác EAF cân tại E, mà I là trung điểm của AF
suy ra EI vuông góc với AF tại I
suy ra góc AEK= góc KEB=60 độ
Xét tam giác EBK và tam giác EBC có
BE chung; góc AEK= góc KEB (CMT), góc CBE=góc KBC (GT)
suy ra tam giác EBK = tam giác EBC (g.c.g)
suy ra BK=BC
suy ra tam giác BCK cân tại B
suy ra góc KCB = (180độ - góc CBK ) :2 = 80 độ
Xét tam giác BCH có góc BHC= 180 độ - (góc BCH + góc CBH) = 90 độ
vậy BE vuông góc với CK tại H
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
b: Sửa đề: AF=EC
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó;ΔDAF=ΔDEC
=>AF=EC
c: Sửa đề: CM AE//CF
Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
d: Sửa đề: I là trung điểm của FC
Ta có: IF=IC
=>I nằm trên đường trung trực của CF(3)
Ta có: DF=DC(ΔDAF=ΔDEC)
=>D nằm trên đường trung trực của CF(4)
ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(5)
Từ (3),(4),(5) suy ra B,D,I thẳng hàng
Bài 1 : Bài giải
Bài 2 : Bài giải
Bài 3 : Bài giải
Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có :
\(BA=BE\) ( gt )
\(BD\) : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )
\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
....
Tự làm tiếp nha ! Mình bận rồi !