K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Hình như đề bài sai đúng không? tam giác ABC > tam giác ACM bởi vì tam giác ACM nằm trong tam giác ABC phải sửa lại là chứng minh tam giác ABM = tam giác ACM.

22 tháng 12 2016

( Mk vẽ hình xấu , chậc ! bn tự vẽ nhé ... ^.^ )

Xét \(\Delta ABM\)\(\Delta ACM\)có :

AB=AC ( gt )

BM=CM ( M là trung điểm của BC )

AM : cạnh chung

do đó \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Delta ABM=\Delta ACM\)( c/m câu a )

\(\Rightarrow\widehat{AMC}=\widehat{AMB}\) ( 2 góc tương ứng )

hay AM là tia phân giác của góc \(\widehat{BAC}\)

\(\Rightarrow\widehat{AMB}+\widehat{AMC}\) = 180 độ ( 2 góc kề bù )

mà góc AMB = góc AMC = \(\frac{180}{2}\)

\(\Rightarrow\)góc AMC = góc AMC = 90 độ

suy ra AM vuông góc với BC

17 tháng 1 2019

CMR tam giác ABM = ACM

\(AB=AC\Rightarrow\Delta ABC\) cân tại \(A\) \(\Rightarrow\widehat{B}=\widehat{C}\)

Xét \(\Delta ABM-\Delta ACM\) có :

\(AB=AC\left(gt\right)\)

\(BM=CM\) ( do AM là tia phân giác )

\(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)

\(\Delta ABM=\Delta ACM\Rightarrow BM=CM\) ( cạnh tương ứng )

\(\Rightarrow M\) là trung điểm của BC

\(\widehat{ABM}+\widehat{ACM}=180^0_{ }\)

\(\widehat{ABM}=\widehat{ACM}=\dfrac{180}{2}=90^0_{ }\)

\(\Rightarrow AM\perp BC\)

12 tháng 1 2019
https://i.imgur.com/Dq7SWyK.jpg
3 tháng 5 2016

A) Xét tam giác ABM và tam giác ADM có:

AB=AD (gt)

góc BAM= góc DAM (AM phân giác của góc A)

AM là cạnh huyền chung

=> tam giác ABM= tam giác ADM (c.g.c)

=> BM = DM ( 2 cạnh tương ứng )

19 tháng 4 2020

a, Xét tg ABM và tg ACM ,có :

AB=AC ( vì tg ABC cân tại A )

BM=CM ( M là trung điểm của BC )

AM chung

=> tg ABM=tg ACM ( c.c.c)

b, Vì tg ABC cân tại A nên :

+) AM là đường phân giác của góc BAC .

+) AM vuông góc với BC.

5 tháng 1 2020

Xét tam giác ABE và tam giác AME có:

AM=AB(gt)

BAE=MAE(AE là tia phân giác BAC)

AE là cạnh chung

=>tam giác ABE=tam giác AME(c-g-c)