Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác MDB và tam giác MEF có:
DM = ME ( M là trung điểm DE )
\(\widehat{DMB}=\widehat{EMC}\) ( hai góc đối )
BM = MF ( gt )
=> Tam giác MDB = tam giác MEF ( c.g.c )
b) Vì tam giác MDB = tam giác MEF ( cmt )
=> EF = BD ( hai cạnh tương ứng )
Mà BD = EC ( gt )
=> EF = EC
=> Tam giác CEF cân tại E ( đpcm )
c)
a) Xét tam giác MBD và tam giác MFE có:
MB = MF (gt)
MD = ME (gt)
\(\widehat{DMB}=\widehat{EMF}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta MBD=\Delta MFE\left(c-g-c\right)\)
b) Do \(\Delta MBD=\Delta MFE\Rightarrow BD=FE\)
Mà BD = EC nên EF = EC.
Vậy tam giác CEF cân tại E.
c) Do \(\Delta MBD=\Delta MFE\Rightarrow\widehat{BDM}=\widehat{FEM}\)
Mà chúng lại ở vị trí so le trong nên AB // FE.
Suy ra \(\widehat{BAC}=\widehat{AEF}\)
Lại có \(\widehat{BAC}=2\widehat{KAE}\) (Tính chất phân giác)
\(\widehat{AEF}=2\widehat{FCE}\) (Góc ngoài tại đỉnh cân)
\(\Rightarrow\widehat{KAE}=\widehat{ECF}\)
Chúng lại ở vị trí so le trong nên AK // CF.
Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.
vào đây tham khảo nhé
https://olm.vn/hoi-dap/detail/98773432332.html
a: Xét ΔMDB và ΔMEF có
MD=ME
\(\widehat{DMB}=\widehat{EMF}\)
MB=MF
Do đó: ΔMDB=ΔMEF
b: Ta có: ΔMDB=ΔMEF
nên EF=DB=EC
hay ΔECF cân tại E
câu d vẽ tam giác đều ACO .từ o kẻ đường vuông góc với hk tại p.tam giác CAH BẰNG tam giác COP cạnh huyền góc nhọn. suy ra CP=AH SUY RA PK=PC=AH.tam giác OKP BẰNG tam giác OCP C.G.C SUY RA GÓC OKC = 15 . GÓC AKC=30 suy ra góc KAC = 180-30-75=75 SUY RA BAK=45
a) Xét ΔABF và ΔCNF có:
AF = CF (F là trung điểm của AC)
∠AFB = CFN (2 góc đối đỉnh)
FB = FN (gt)
⇒ ΔABF = ΔCNF (c.g.c)
⇒ ∠ABF = ∠CNF (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AB // NC
Xét ΔACE và ΔBME có:
AE = BE (E là trung điểm của AB)
∠AEC = ∠BEM (2 góc đối đỉnh)
EC = EM (gt)
⇒ ΔACE = ΔBME (c.g.c)
⇒ ∠ACE = ∠BME (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AC // MB
b) Xét ΔANF và ΔCBF có:
AF = CF (F là trung điểm của AC)
∠AFN = ∠CFB (2 góc đối đỉnh)
FN = FB (gt)
⇒ ΔANF = ΔCBF (c.g.c)
⇒ ∠ANF = ∠CBF (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AN // BC (1)
Xét ΔAME và ΔBCE có:
AE = BE (E là trung điểm của AB)
∠AEM = ∠BEC (2 góc đối đỉnh)
EM = EC (gt)
⇒ ΔAME = ΔBCE (c.g.c)
⇒ ∠AME = ∠BCE (2 góc tương ứng)
mà 2 góc ở vị trí so le trong ⇒ AM // BC (2)
Từ (1) và (2) ⇒ 3 điểm M, A, N thẳng hàng
c) Ta có: ΔANF = ΔCBF (theo b)
⇒ AN = BC (2 cạnh tương ứng) (3)
Ta có: ΔAME = ΔBCE (theo b)
⇒ AM = BC (2 cạnh tương ứng) (4)
Từ (3) và (4) ⇒ AM = AN
chào bạn!! :v