Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp : Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này tới mặt phẳng chứa đường thẳng kia và song song với đường thẳng này.
Cách giải : Qua M dựng đường thẳng song song với AC cắt SA tại E.
Gọi H là trung điểm AB.
Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy nên S H ⊥ A B C
Đáp án là D.
Gọi I là điểm thuộc SA sao cho S I S A = 1 3 ⇒ I M // A C .
Gọi H là trung điểm của .AB S A B ⊥ A B C S A B ∩ A B C = A B S H ⊥ A B ⇒ S H ⊥ A B C
A C ⊥ A B A C ⊥ S H ⇒ A C ⊥ S A B ⇒ I M ⊥ S A B ⇒ I M ⊥ B I ⇒ Δ B I M
V S B A M V S B A C = S M S C = 1 3 ⇒ V S B A M = 1 3 V S B A C = 1 3 . 1 3 S H . S △ A B C = 1 9 . 4 3 2 1 2 A B . A C = 4 3 9 A C
V A B I M V A B S M = A I A S = 2 3 ⇒ V A B I M = 2 3 V A B S M = 2 3 . 4 3 9 A C = 8 3 27 A C
B I 2 = A B 2 + A I 2 − 2 A B . A I . c os 60 0 = 4 2 + 8 3 2 − 2.4. 8 3 . c os 60 0 = 112 9 ⇒ B I = 4 7 3
S Δ B I M = 1 2 B I . I M = 1 2 . 4 7 3 . 1 3 A C = 2 7 9 A C
V A B I M = 1 3 S △ B I M . d A , B I M ⇒ d A , B I M = 3 V A B I M S △ B I M = 3. 8 3 27 A C 2 7 9 A C = 4 21 7
Đáp án C
Ta có cos α = cos C C ' ; B M ^ = cos B M C ^ .
Cạnh A ' H = B C 3 2 = a 3 2 , A H = A B 3 2 = a 3 2
A A ' = A ' H 2 + A H 2 = a 6 2 ⇒ M C = a 6 4 .
Cạnh B ' H = A ' B ' 2 + A ' H 2 = a 7 2 .
Do đó cos B ' B H ^ = B B ' 2 + B H 2 - B ' H 2 2 B B ' . B H = 0 ⇒ B ' B ⊥ B H
⇒ M C ⊥ B C ⇒ c o s M B C ^ = M C B M = M C B C 2 + M C 2 = 33 11 .