\(=\frac{1}{2}B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

giải rõ ra đi

14 tháng 2 2018

Hình học lớp 7

vẽ DE⊥CADE⊥CA. F là trung điểm của CD.

ta có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE, nên

FE=CF=FD=BC=CD2FE=CF=FD=BC=CD2

do đó tam giác CFE cân.

đồng thời :180o−BCAˆ=FCEˆ⇒FCEˆ=60o180o−BCA^=FCE^⇒FCE^=60o

nên tam giác CFE đều. => CF=FE=CE

xét tam giác BFE và DCE có:

CE=FEFCEˆ=CFEˆ=60oBF=CD(BC=CF=FD)CE=FEFCE^=CFE^=60oBF=CD(BC=CF=FD)

do đó tam giác BFE = tam giác DCE (c-g-c)

FBEˆ=CDEˆ=900−600=300FBE^=CDE^=900−600=300

=> tam giác BED cân tại E, nên

BE=ED (1)

tam giác ABC : ABCˆ+ACBˆ+BACˆ=180o⇒CABˆ=1800−(ABCˆ+ACBˆ)=1800−1650=150ABC^+ACB^+BAC^=180o⇒CAB^=1800−(ABC^+ACB^)=1800−1650=150

đồng thời:

EBAˆ+FBEˆ=CBAˆ=450⇒EBAˆ=450−300=150EBA^+FBE^=CBA^=450⇒EBA^=450−300=150

nên EBAˆ=CABˆ=150EBA^=CAB^=150

do đó tam giác BEA cân tại E.

=> BE=AE (2)

từ (1) và (2) => ED=AE.

=> tam giác ADE cân tại E.

đồng thời tam giác ADE có DEAˆ=90oDEA^=90o

nên tam giác ADE là tam giác cân vuông.

⇒EDAˆ=DAEˆ=9002=45o⇒EDA^=DAE^=9002=45o

ta lại có: BDAˆ=CDEˆ+EDAˆ=30o+45o=75o