Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có góc B<góc C
nên AB>AC
Xét ΔABC có
AB>AC
HB,HC lần lượt là hình chiếu của AB,AC trên BC
=>HB>HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB>HC
=>MB>MC
c: MB>MC
=>góc MCB>góc MBC
a: góc B<góc C
=>AB>AC
Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
b: Xét ΔMBC có HB>HC
mà HB,HC lần lượt là hình chiếu của MB,MC trên BC
nên MB>MC
=>góc MCB>góc MBC
a: \(\widehat{B}< \widehat{C}\)
nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
b: Xét ΔDBC có HB>HC
mà HB là hình chiếu của DB trên BC
và HC là hình chiếu của DC trên BC
nên DB>DC
a: góc B<góc C
=>AB>AC
=>BH>HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
BH>HC
=>MB>MC
=>góc MBC<góc MCB
a)Xét t/giác ABC có AB>AC
⇒ ACB>ABC(quan hệ giữa góc và cạnh đối diện)
b) Ta có: AB > AC (gt)
⇒ HB > HC (quan hệ giữa hình xiên và đường chiếu của chúng)
a) Xét ΔABC có
BA<BC(gt)
mà góc đối diện với cạnh BA là \(\widehat{ACB}\)
và góc đối diện với cạnh BC là \(\widehat{BAC}\)
nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có
HB=HM(gt)
AH chung
Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)
Suy ra: BA=MA(hai cạnh tương ứng)
Xét ΔBAM có BA=MA(cmt)
nên ΔBAM cân tại A(Định nghĩa tam giác cân)
Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)
nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)
a: Ta có: ΔBEH vuông tại H
nên \(\widehat{BEH}< 90^0\)
=>\(\widehat{BEA}>90^0\)
=>BA>BE
b: Ta có: ΔEHC vuông tại H
nên \(\widehat{HEC}< 90^0\)
=>\(\widehat{AEC}>90^0\)
hay CA>CE
c: Xét ΔEBC có HB<HC
mà HB là hình chiếu của EB trên BC
và HC là hình chiếu của EC trên BC
nên EB<EC
a: \(\widehat{B}< \widehat{C}\)
nên AB>AC
XétΔABC có AB>AC
mà BH là hình chiếu của AB trên BC
và CH là hình chiếu của AC trên BC
nên BH>CH
b: Xét ΔMBC có
BH là hình chiếu của MB trên BC
CH là hình chiếu của MC trên BC
mà BH>CH
nên MB>MC
hay \(\widehat{MBC}< \widehat{MCB}\)