Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{ABC}+\widehat{DBC}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{BCE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{DBC}=\widehat{BCE}\)
Xét ΔDBC và ΔECB có
BD=CE
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>DC=EB
ΔDBC=ΔECB
=>\(\widehat{BCD}=\widehat{CBE}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
Ta có: IB+IE=BE
IC+ID=CD
mà IB=IC và BE=CD
nên IE=ID
b: Xét ΔABC có \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)
nên BC//DE
c: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(2)
Ta có: IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,M,I thẳng hàng
rac roi roi day.Sorry bn nha