Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác DBI và CIE
góc DIB=CIE (đđỉnh)
DI=IE (gt)
BI=IC (gt)
vậy tam giác DBI=CIE (c.g.c)
Vậy BD=CE (2 cạnh tương ứng)
Vậy góc B=ICE (2 góc tương ứng)
Vì góc B=ACI (gt)
B=ICE (cmt)
Vậy ACI=ICE
Vậy CB là tia phân giác của góc ACE
Xét \(\Delta\)DIB và \(\Delta\)CIE có:
DI = IE ( I là trung điểm của DE )
\(\widehat{DIB}\)=\(\widehat{CIE}\)( đối đỉnh)
BI =IC ( I là trung điểm của BC )
\(\Rightarrow\)\(\Delta\)DIB = \(\Delta\)CIE (c.g.c)
\(\Rightarrow\)BD = CE ( hai cạnh tương ứng
\(\widehat{B}=\widehat{ICE}\)( hai góc tương ứng)
mà \(\widehat{B}=\widehat{ACI}\)
\(\Rightarrow\)\(\widehat{ICE}=\widehat{ACI}\)
\(\Rightarrow\)CB là tia phân giác của \(\widehat{ACE}\)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
c: Xét ΔACD và ΔABE có
AC=AB
CD=BE
AD=AE
Do đó: ΔACD=ΔABE
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Suy ra: EC=DB
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{EBO}=\widehat{DCO}\)
Do đó:ΔOEB=ΔODC
c: Ta có: ΔOEB=ΔODC
nên OB=OC
Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
Do đó: ΔAOB=ΔAOC
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC