K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có

KB=HC

\(\widehat{KBO}=\widehat{HCO}\)

Do đó:ΔOBK=ΔOCH

9 tháng 3 2022

1 lấy đâu ra kb=hc

ΔBAH vuông tại H

=>BH<AB

=>BH<AC

10 tháng 1 2020

Bạn học Định lý Pytago chưa ??

Xét tứ giác AEHD có

góc AEH+góc ADH=180 độ

=>AEHD là tứ giác nội tiếp

=>góc A+góc DHE=180 độ

21 tháng 4 2022

a, Áp dụng định lý Pytago :

ta có : \(BC^2=AC^2+AB^2\)

           \(BC^2=3^2+4^2\)

           \(BC^2=9+16=25=5^2\)

       =>\(BC=5^{ }\)

b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn

Có : Trong tam giác ABC có BC=5, AC=4, AB=3

=> góc A > góc B > góc C 

Vậy góc B > góc C

c, Xét △BIC và △AIC có

góc \(C_1=C_2\)

BAC = KHC = 90 độ

IC cạnh chung

=> △HIC = △AIC

Xét △HIB và △KIA có

IH = IA (cmt)

\(I_1=I_2\)( đối đỉnh)

Góc A = góc H = 90 độ

=> △HIB = △AIK

Vậy cạnh AK = BH