Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_1=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinB\)
\(S_2=\dfrac{1}{2}\cdot3\cdot BC\cdot\dfrac{1}{2}\cdot AB\cdot sinC=\dfrac{3}{4}\cdot BC\cdot AB\cdot sinC\)
=>\(\dfrac{S_2}{S_1}=\dfrac{3}{4}:\dfrac{1}{2}=\dfrac{3}{2}\)
=>Diện tích mới tạo thành bằng 3/2 lần diện tích cũ
\(a,\overrightarrow{AB}=\left(2;10\right)\)
\(\overrightarrow{AC}=\left(-5;5\right)\)
\(\overrightarrow{BC}=\left(-7;-5\right)\)
\(b,\) Thiếu dữ kiện
\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)
\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)
a: vecto AB=(-7;1)
vecto AC=(1;-3)
vecto BC=(8;-4)
b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)
Lời giải:
$|\overrightarrow{BC}|=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$ theo định lý Pitago.
Xét ΔABC ta có
\(BC^2=\left(10a\right)^2=100a^2\)
\(AB^2+AC^2=\left(6a\right)^2+\left(8a\right)^2=100a^2\)
Từ (1) và (2) \(BC^2=AB^2+AC^2\)
Nên ΔABC vuông tại A
Xét ΔABC ta có:
\(AH\cdot BC=AB\cdot AC\)
\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{8a\cdot6a}{10a}=\dfrac{48a^2}{10a}=4,8a\)
\(\Rightarrow\left|\overrightarrow{AH}\right|=AH=4,8a\)
Chọn D.
Diện tích tam giác ABC ban đầu là
Khi tăng cạnh BC lên 2 lần và cạnh AC lên 3 lần thì diện tích tam giác ABC lúc này là
Ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{A}=180^o-\widehat{B}-\widehat{C}\)
\(\Leftrightarrow\widehat{A}=180^o-45^{^{ }o}-30^o=105^o\)
Theo định lý hàm sin ta có :
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{AC}{sinB}.sinA\left(1\right)\)
\(sinA=sin105^o=sin\left(90^o+15^o\right)=cos15^o\)
\(cos30^o=2cos^215^o-1\)
\(\Leftrightarrow2cos^215^o=cos30^o+1\)
\(\Leftrightarrow cos^215^o=\dfrac{cos30^o+1}{2}\)
\(\Leftrightarrow cos^215^o=\dfrac{\dfrac{\sqrt[]{3}}{2}+1}{2}=\dfrac{\sqrt[]{3}+2}{4}\)
\(\Leftrightarrow cos15^o=\dfrac{\sqrt[]{\sqrt[]{3}+2}}{2}\left(0^o< 15^o< 90^o\right)\)
\(\left(1\right)\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{8a}{\dfrac{\sqrt[]{2}}{2}}.\dfrac{\sqrt[]{\sqrt[]{3}+2}}{2}\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{8a\sqrt[]{2}}{2}.\sqrt[]{\sqrt[]{3}+2}\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=4a\sqrt[]{\sqrt[]{2}\left(\sqrt[]{3}+2\right)}\)