K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

Dựng \(AH\) vuông góc \(BC\). Đặt \(AB=x\Rightarrow AH=x.\sin60^0=\dfrac{x\sqrt{3}}{2};BH=x\cos60^0=\dfrac{x}{2}\)

\(\Rightarrow HC=BC-BH=8-\dfrac{x}{2};AC=12-x\)

Tam giác \(AHC\) vuông tại \(H\Rightarrow AC^2=AH^2+HC^2\Rightarrow\left(12-x\right)^2=\dfrac{3x^2}{4}+\left(8-\dfrac{x}{2}\right)^2\)

Giải phương trình trên ta được \(x=5\).

Vậy \(AB=5cm\).

1 tháng 10 2017

Đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

NV
18 tháng 7 2021

Kẻ đường cao AD, đặt \(AB=x>0\) ; \(BD=y>0\)

\(\Rightarrow AC=12-x\) ; \(CD=8-y\)

Trong tam giác vuông ABD:

\(BD=AB.cosB\Leftrightarrow y=x.cos60^0=\dfrac{x}{2}\) \(\Rightarrow CD=8-\dfrac{x}{2}\) 

Theo định lý Pitago:

\(\left\{{}\begin{matrix}AD^2=AB^2-BD^2\\AD^2=AC^2-CD^2\end{matrix}\right.\) \(\Rightarrow AB^2-BD^2=AC^2-CD^2\)

\(\Leftrightarrow x^2-\left(\dfrac{x}{2}\right)^2=\left(12-x\right)^2-\left(8-\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow16x-80=0\)

\(\Rightarrow x=5\)

Vậy \(\left\{{}\begin{matrix}AB=5\\AC=7\end{matrix}\right.\)

NV
18 tháng 7 2021

undefined

16 tháng 10 2020

                                                                                    bài giải

                                                             chú ý dấu nhân viết tắt bằng kí hiệu *

                                                                                    BC là

                                                                        60+(12-8)=64 (cm)

                                                              diện tích hình tam giác ABC là

                                                                (12+8+64):2=42 (cm)

                                                                                   đáp số 42 cm

chúc bạn làm bài tập tốt 

dippi

bạn cute thật đó ><

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)

NV
23 tháng 7 2021

Kẻ đường cao AH ứng với BC

Đặt \(AB=x\) với \(0< x< 12\Rightarrow AC=12-x\) 

Đặt \(BH=y\Rightarrow CH=8-y\) (với \(0< y< 8\))

Trong tam giác vuông ABH ta có:

\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=\dfrac{x}{2}\Rightarrow y=\dfrac{x}{2}\)

\(\Rightarrow CH=8-y=8-\dfrac{x}{2}\)

 \(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=\dfrac{x\sqrt{3}}{2}\)

Áp dụng Pitago cho tam giác vuông ACH:

\(AC^2=AH^2+CH^2\Leftrightarrow\left(12-x\right)^2=\left(\dfrac{x\sqrt{3}}{2}\right)^2+\left(8-\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow16x-80=0\Rightarrow x=5\)

\(\Rightarrow AC=12-x=7\)

Vậy \(AB=5cm,AC=7cm\)

NV
23 tháng 7 2021

undefined

15 tháng 8 2016

Giải:

Toán lớp 9
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=70
0, góc C=50nên góc A=600

Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400

Áp dụng HTCVGTTGV ABH,ta có :

BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 70=23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)

Toán lớp 9

Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.

Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1
 =300

Xét tam giác vuông AHC,ta có:
AH2 +HC2  =AC2
(12√3) +18=AC2

=>AC=6√21 (cm)

Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH

                                                       12√3=tan góc C.18

                                                       => góc C=49=>góc A=41=>gócA= 710

Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm

Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490    

Ròy đóa Tuyền thanghoa

 

 

 

17 tháng 8 2016

tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi