Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
Bài 2:
a: Xét ΔDAC và ΔBCA có
DA=BC
AC chung
DC=BA
Do đó: ΔDAC=ΔBCA
=>\(\widehat{DCA}=\widehat{BAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: ΔDAC=ΔBCA
=>\(\widehat{DAC}=\widehat{BCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
AD//BC
AH\(\perp\)BC
Do đó: AD\(\perp\)AH
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o
⇒ ΔABD đều (đpcm)
b, ΔABD đều ⇒ AB = AD
Xét ΔAHB và ΔAHD có:
AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)
⇒ ΔAHB = ΔAHD (c.c.c)
⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù
⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o
⇒ AH ⊥ BD (đpcm)
c, ΔABD đều ⇒ AB = BD = AD = 2cm
⇒ HB = HD = 1cm
⇒ HC = BC - HB = 5 - 1 = 4cm
ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm
ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)
nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)
b) Ta có: ΔBAD đều(cmt)
mà AH là đường trung tuyến ứng với cạnh BD(gt)
nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)
hay AH\(\perp\)BD(Đpcm)