Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg EAC và tg BAD có:
Góc EAC = BAD ( = 90° + BAC )
EA = BA
AD = AC
Suy ra ∆EAC = ∆BAD ( c- g- c )
Suy ra BD= EC( đpcm)
Đó 2 ∆ trên bằng nhau suy ra góc ADB= góc ACE
Lại có góc ADB+ góc BDC + góc ACD= 90°
Suy ra: góc BDC + góc ACD + góc ACD = 90°
Suy ra∆ CDO vuông tại O( Ở là gđ của EC và BD )
Suy ra: EC vuông góc BD
Trả lời :
A D C B
a , Xét tam giác ACD và tam giác CBD có :
AD = BD ( gt )
CD : Cạnh chung
AC = BC ( gt )
Vậy tam giác ACB = tam giác CBD ( c . c .c )
b ) Theo câu a, tam giác ACD = tam giác CBD
=> \(\widehat{CAB}\) \(=\) \(\widehat{CBD}\) ( góc tương ứng )
c , Cũng từ a , ta có : tam giác ACD = tam giác CBD
=> \(\widehat{ADC}\) \(=\) \(\widehat{BDC}\) ( góc tương ứng )
mà \(\widehat{ADC}\) \(+\) \(\widehat{BDC}\) \(=\) \(\widehat{ADB}\) nên => CD là tia phân giác của \(\widehat{ACD}\)
_Học tốt ạ :)
ghi lời giải chi tiết nhan