K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

a, Xét △BEH có: BE = BH (gt) => △BEH cân tại B => ^E  = ^BHE 

Xét  △BEH có ABC là góc ngoài của tam giác tại đỉnh B => BAC = ^E + ^BHE = 2 . ^E

Mà ABC = 2 . ^C

=> 2 . ^C = 2 . ^E

=> ^C = ^E

Mà ^E  = ^BHE (cmt)

=> ^C = ^BHE 

Mà ^BHE = ^DHC (2 góc đối đỉnh)

=> ^C = ^DHC   (1)

Xét △DHC có: ^DHC = ^C (cmt) => △DHC cân tại D => DC = DH 

Xét △AHC vuông tại H có: ^ACH + ^CAH = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> ^CAH = 90o - ^ACH 

=> ^DAH = 90o - ^DCH (2)

Ta có: ^AHD + ^DHC = 90o (2 góc phụ nhau)

=> ^AHD  = 90o - ^DHC (3)

Từ (1) ; (2) ; (3) => ^DAH = ^AHD

Xét △ADH có: ^DAH = ^AHD (cmt) => △ADH cân tại D

b, Xét △EAD có: ^ADE + ^DAE + ^E = 180o (tổng 3 góc trong tam giác)

Xét △ABC có: ^ABC + ^C + ^BAC = 180o (tổng 3 góc trong tam giác)

Mà ^C = ^E (cmt) ; ^DAE là góc chung

=> ^ADE = ^ABC

c, Vì ^E = 25o mà ^E  = ^BHE => ^BHE = 25o

Ta có: ^AHB + ^BHE = ^AHE

=> 90o + 25o = ^AHE 

=> ^AHE = 115o

Xét △AEH có: ^E + ^AHE + ^HAE = 180o (tổng 3 góc trong tam giác)

=> 25o + 115o + ^HAE = 180o 

=> ^HAE = 40o 

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1

a) Có : \(\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ACE}=180^o\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

-Xét tam giác ABD và ACE có :

AB=AC (tam giác ABC cân tại A)

BD=CE(đều bằng AB)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

=> Tam giác ABD=ACE(c.g.c)

=> AD=AE

=> Tam giác ADE cân tại A(đccm)

b) Tam giác ABC cân tại A có : \(\widehat{BAC}=40^o\)

\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-40^o}{2}=70^o\)

- Có : \(\widehat{ABC}+\widehat{ABD}=180^o\)

\(\Rightarrow70^o+\widehat{ABD}=180^o\)

\(\Rightarrow\widehat{ABD}=110^o\)

- Xét tam giác ABD cân tại B(BD=AB) có :

\(\widehat{ABD}+\widehat{BAD}+\widehat{ ADB}=180^o\)

\(\Rightarrow110^o+\widehat{BAD}+\widehat{ADB}=180^o\)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}=\frac{180^o-110^o}{2}=35^o\)

- Tương tự, ta có : \(\widehat{AEC}=\widehat{CAE}=35^o\)

- Có : \(\widehat{DAE}=\widehat{DAB} +\widehat{CAE}+\widehat{BAC}=35^o+35^o+40^o=110^o\)

Vậy : \(\widehat{D}=\widehat{E}=35^o,\widehat{DAE}=110^o\)

c) Tam giác ABD cân tại B(AB=BD) có \(BH\perp DA\)

=> HD=HA(t/c đg TT,PG,cao,.. của tam giác cân)

Tương tự có AK=KE

Mà : AD=AE(tam giác ADE cân tại A)

=> AH=AK

-Xét tam giác AHO và AKO, có :

AH=AK(cmt)

\(\widehat{AHO}=\widehat{AKO}=90^o\)

AO-cạnh chung

=> Tam giác AHO=AKO(cạnh huyền-cạnh góc vuông)

=> HO=OK(đccm)

d) Do tam giác AHO=AKO(cmt)

=> \(\widehat{HAO}=\widehat{KAO}\)

\(\Rightarrow\widehat{HAB}+\widehat{BAO}=\widehat{KAC}+\widehat{CAO}\)

Mà : \(\widehat{HAB}=\widehat{KAC}=35^o\left(cmt\right)\)

Mà :\(\widehat{BAO}+\widehat{CAO}=\widehat{BAC}\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}=\frac{\widehat{BAC}}{2}=\frac{40}{2}=20^o\)

- Gọi giao điểm của AO và BC là I

Xét tam giác AIB có : \(\widehat{BAI}+\widehat{ABI}+\widehat{AIB}=180^o\)

\(\Rightarrow20^o+70^o+\widehat{AIB}=180^o\)

\(\Rightarrow90^o+\widehat{AIB}=180^o\)

\(\Rightarrow\widehat{AIB}=90^o\)

\(\Rightarrow AI\perp BC\left(đccm\right)\)

#H

1 tháng 3 2017

A B C D H B' E 1 1 2 3 1 1

\(\Delta BEH\)có BE = BH\(\Rightarrow\Delta BEH\)cân tại B\(\Rightarrow\widehat{E}=\widehat{H_1}\)

\(\widehat{B_1}\)là góc ngoài của\(\Delta BEH\Rightarrow\widehat{B_1}=\widehat{E}+\widehat{H_1}\Rightarrow2\widehat{C}=2\widehat{H_1}\Rightarrow\widehat{C}=\widehat{H_1}\)\(\widehat{H_1}=\widehat{H_2}\)(đối đỉnh)\(\Rightarrow\widehat{H_2}=\widehat{C}\)

\(\Rightarrow\Delta HDC\)cân tại D

\(\Delta AHC\)vuông tại H có\(\widehat{HAC}+\widehat{C}=90^0\)\(\widehat{H_2}+\widehat{H_3}=\widehat{AHC}=90^0;\widehat{H_2}=\widehat{C}\Rightarrow\widehat{HAC}=\widehat{H_3}\)

\(\Rightarrow\Delta ADH\)cân tại D

b)\(\Delta AHB,\Delta AHB'\)vuông tại H có AH chung ; HB = HB' (H là trung điểm BB')\(\Rightarrow\Delta AHB=\Delta AHB'\left(2cgv\right)\)

\(\Rightarrow\widehat{B_1}=\widehat{B'_1}\)(2 góc tương ứng)\(\Rightarrow\Delta ABB'\)cân tại A

c)\(\widehat{B'_1}\)là góc ngoài\(\Delta AB'C\)nên\(\widehat{B'_1}=\widehat{A_1}+\widehat{C}\Rightarrow\widehat{A_1}=\widehat{B'_1}-\widehat{C}=\widehat{B_1}-\widehat{C}=2\widehat{C}-\widehat{C}=\widehat{C}\)

\(\Rightarrow\Delta AB'C\)cân tại B' => B'C = AB' = AB (\(\Delta ABB'\)cân tại A) mà HB' = BH = BE

=> B'C + HB' = AB + BE hay HC = AE

1 tháng 3 2017

Bạn vẽ cái hình đi bạn :(