Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ: a/ Ta có: BD là phân giác góc B
nên ABD = DBC = 1/2 ABC (1)
Ta có: CE là phân giác góc C
nên ACE = ECB = 1/2 ACB (2)
Mà ABC = ACB (3)
Từ (1), (2), (3) => góc DBC = góc ECB
b/ Xét tam giác DBC và tam giác ECB có:
-góc B = góc C (GT)
-BC: cạnh chung
-góc DBC = góc ECB (câu a)
Vậy tam giác DBC = tam giác ECB
c/ Xét tam giác ABD và tam giác ACE có
-góc ABD = góc ACE
-góc A: góc chung
-AB = AC (vì có B = C nên là tam giác cân)
Vậy tam giác ABD = tam giác ACE (g.c.g)
=> BD = CE (2 cạnh tương ứng)
d/ Ta có: tam giác DBC = tam giác ECB (câu b)
=> góc BEC = góc BDC (2 góc tương ứng)
e/ Ta có: tam giác ABD = tam giác ACE (câu c)
=> góc AEC = góc ADB (2 góc tương ứng)
h/ Ta có: BD là phân giác góc B
CE là phân giác góc C
Mà góc B = góc C
=> góc ABD = góc ACE (đpcm)
i/ Xét tam giác ABD và tam giác ACE có:
- A: góc chung
- ABD = ACE (câu a)
- AB = AC (vì B = C nên là tam giác cân)
=> tam giác ABD = tam giác ACE
j/ Ta có: tam giác ABD = tam giác ACE (câu i)
=> AD = AE (2 cạnh tương ứng)
a,xét tam giác abd và tam giác ace có
góc a chung
góc e= góc d =90 độ
ab = ac
=>2 tam giác abd=ace
b, c/m tam giác cân nào?
1) Xét Tam giác DBC và Tam giác ECB có :
ABC = ACB ( gt)
BC chung
DBC = ECB ( cùng bằng 1/2 hai góc bằng nhau ABC = ACB)
=> TAm giác DBC = ECB ( g-c-g)
=> BD = CE ( hai cạnh tương ưng )
2) Tam giác DBC = ECB ( CMT)
=> góc BEC = BDC ( hai goc tương ứng) (1)
BEC + AEC = 180 độ (kề bù) (2)
BDC + ADB = 180 độ ( kề bù) (3)
Từ (1) (2) và (3) => AEC = ADB
ABD = 1/2 ABC ( BD là p/g) (4)
ACE = 1/2 ACB ( CE là p/g) (5)
ABC =ACB ( gt) (6)
Từ (4) (5) và (6) = > ABD = ACE
Xét tam giác ABD và TAm giác ACE có :
AEC = ADB ( CMT)
BD = CE ( CMT)
ABD = ACE ( CMT)
=> TAm giác ABD = tam giác ACE ( g-c-g)
=> AD = CE ( hai goác tương ứng)
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
k nhé
Ta có hình vẽ sau:
D E B M C 1 2 1 2 A
a) Vì AB = AC => ΔABC cân
=> \(\widehat{B_2}=\widehat{C_1}\)
Xét ΔABM và ΔACM có:
AB = AC (gt)
\(\widehat{B_2}=\widehat{C_1}\left(cmt\right)\)
BM = CM (gt)
=> ΔABM = ΔACM(c.g.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
=> \(\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)
=> AM \(\perp\) BC(đpcm)
b) Ta có: \(\widehat{B_2}=\widehat{C_1}\) và \(\widehat{B_1}+\widehat{B_2}=180^o;\widehat{C_1}+\widehat{C_2}=180^o\)
=> \(\widehat{B_1}=\widehat{C_2}\)
Xét ΔABD và ΔACE có:
AB = AC(gt)
\(\widehat{B_1}=\widehat{C_2}\left(cmt\right)\)
BD = CE (gt)
=> ΔABD = ΔACE(c.g.c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
mà \(\widehat{BAM}=\widehat{CAM}\) (ΔABM = ΔACM)
=> \(\widehat{BAD}+\widehat{BAM}=\widehat{CAE}+\widehat{CAM}\)
=> AM là tia p/g của \(\widehat{DAE}\) (đpcm)