Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác abc vuông tại a, suy ra trung tuyến am ứng với cạnh huyền bc bằng 1/2 bc và = 5cm
b) tứ giác adme có â = 90o; d^ = 90o; ê = 90o => adme là hình chữ nhật
HT
a) Ta có ngay AH.BC = AB.AC \(\left(=\frac{1}{2}S_{ABC}\right)\)
b) Xét tứ giác NMPA có 3 góc vuông nên NMPA là hình chữ nhật.
c) Ta có ngay \(\Delta MPC\sim\Delta AHC\left(g-g\right)\Rightarrow\frac{MP}{AH}=\frac{PC}{HC}\Rightarrow\frac{NA}{PC}=\frac{AH}{HC}\)
Lại có \(\widehat{NAH}=\widehat{PCM}\) (Cùng phụ với góc HAC)
\(\Rightarrow\Delta NAH\sim\Delta PCH\left(c-g-c\right)\Rightarrow\widehat{NHA}=\widehat{PHC}\)
Vậy nên \(\widehat{NHP}=\widehat{NHA}+\widehat{AHP}=\widehat{PHC}+\widehat{AHP}=\widehat{AHC}=90^o\)
d) Dp ANMP là hình chữ nhật nên NP = AM
Lại có AM là đường xiên nên \(AM\ge AH\Rightarrow NP\ge AH\)
Vậy NP ngắn nhất khi M trùng H.
a) Tứ giác AIHK có góc H=K=I=A=90độ
=> AIHK LÀ HÌNH CHỮ NHẬT ( tỨ GIÁC CÓ 3 GÓC VUÔNG)
b: Xét tứ giác AIHK có
\(\widehat{KAI}=\widehat{AIH}=\widehat{AKH}=90^0\)
Do đó: AIHK là hình chữ nhật
Suy ra: IK=AH
BT 1:
a/ Xét tg ABE và tg ACF có
^BAE=^CAF (AD là phân giác ^BAC)
^AEB=^AFC=90
=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)
b/ Xét tg BDE và tg CDF có
^BDE=^CDF (góc đối đỉnh)
^BED=^CFD=90
=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)
Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)
BT 2:
a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)
cm tương tự cũng có AI//KH (cùng vg với AC)
=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)
^BAC=90
=> AIHK là hcn
b/
+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)
+ Xét 2 tg vuông IAK và tg vuông HKA có
IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)
=> ^AIK=^AHK (2)
Từ (1) và (2) => ^AIK=^ACB
1: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật