Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: △AKB=△AKC(c.c.c)△���=△���(�.�.�) (đpcm)
⇒ˆAKB=ˆAKC⇒���^=���^. Mà ˆAKB+ˆAKC=ˆBKC=1800���^+���^=���^=1800. Do đó:
ˆAKB=ˆAKC=900⇒AK⊥BC���^=���^=900⇒��⊥�� (đpcm)
b)
Ta thấy: EC⊥BC;AK⊥BC��⊥��;��⊥�� (đã cm ở phần a)
⇒EC∥AK⇒��∥�� (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=450�^=450
Tam giác CBE vuông tại C có ˆB=450�^=450 ⇒ˆE=1800−(ˆC+ˆB)=1800−(900+450)=450⇒�^=1800−(�^+�^)=1800−(900+450)=450
⇒ˆE=ˆB⇒�^=�^ nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
d mình ko biết
a)Xét tam giác AKB và tam giác AKC :
Có AB=AC
AK chung
BK=KC
Suy ra : tam giác AKB= tam giác AKC
b)Vì tam giác AKB = tam giác AKC
Suy ra góc BKA=gócCKA
mà góc BKA+gócCKA=180 độ (kề bù)
suy ra gócBKA=gócCKA=90 độ
suy ra AK vuông góc BC
c)Ta có góc ECK=gócAKB=90 độ
mà hai góc này ở vị trí đồng vị
suy ra EC // AK
a)Xét tam giác AKB và tam giác AKC :
Có AB=AC
AK chung
BK=KC
Suy ra : tam giác AKB= tam giác AKC
b)Vì tam giác AKB = tam giác AKC
/
Nguyễn Minh Thư (/thanhvien/minhthukute2005)
29 tháng 4 2017 lúc 17:57
Suy ra góc BKA=gócCKA
mà góc BKA+gócCKA=180 độ (kề bù)
suy ra gócBKA=gócCKA=90 độ
suy ra AK vuông góc BC
c)Ta có góc ECK=gócAKB=90 độ
mà hai góc này ở vị trí đồng vị
suy ra EC // AK
a, Xét tam giác AKB và tam giác AKC có:
AK chung
AB = AC (gt)
KB = KC ( K là trung điểm BC )
=> Tam giác AKB = tam giác AKC (c.c.c)
AB = AC (gt) => Tam giác ABC cân tại A có AK là đường trung tuyến ( K là trung điểm BC )
=> AK đồng thời là đường cao => AK vuông góc với BC.
b, Ta có:
AK vuông góc với BC (cmt)
EC vuông góc với BC (gt)
=> AK song song với EC
c, Tam giác ABC cân tại A có AK vừa là đường trung tuyến vừa là đường cao => AK cũng là đường phân giác tam giác ABC
=> Góc BAK = góc CAK = 1/2 góc BAC = 1/2*90 độ(tam giác ABC vuông tại A) = 30 độ
Lại có: AK song song với EC (cmt) => Góc KAC = góc ECA ( so le trong)
Mà góc KAC = 30 độ => Góc ECA = 30 độ
Góc BAC + góc CAE = 180 độ ( kề bù)
=> Góc CAE = 180 độ - góc BAC = 180 độ - 90 độ = 90 độ
Xét tam giác ACE có : Góc AEC + góc ECA + góc CAE = 180 độ ( định lí tổng 3 góc trong tam giác)
Góc AEC + 30 độ + 90 độ = 180 độ
=> Góc AEC = 180 độ - 90 độ - 30 độ = 60 độ
Hay góc BEC = 60 độ
Vậy Góc BEC = 60 độ
A B C K \
a) \(\Delta AKB\)và \(\Delta AKC\)có:
AB = AC (theo GT)
BK = CK (vì K là trung điểm của BC)
AK: cạnh chung
Do đó: \(\Delta AKB=\Delta AKC\)(c.c.c)
Suy ra: \(\widehat{AKB}=\widehat{AKC}\)(cặp góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)
Nên \(\widehat{AKB}=\frac{180^o}{2}=90^o\)
Vậy \(AK\perp BC\)
a,xet tam giac AKB va tam giac AKC co:
BK=CK(gt)
AK canh chung
AB=AC(gt)
=>tam giac AKB=tam giac AKC(c.c.c)
b,xet tam giacABC co:
AB=AC=>tam giac ABC can tai A
=>AK vua la duong trung truc, vua la duong cao
=>AK vuong goc voi BC
c,ta co: AK vuong goc voi BC, CE vuong goc voi BC
=>CK song song voi CE
Cho tam giác ABC vuông tại A có AB AC = . Gọi K là trung điểm của BC. 1) Chứng minh = AKB AKC . 2) Qua C vẽ đường thẳng vuông góc với BC cắt AB tại E . Tính số đo góc AEC.