Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AE = 1/3.AC (gt) => AE = 1/2EC
mà EC = EB (gt)
=> AE = 1/2EB
tam giác EAB vuông tại A
=> góc EBA = 30 (xem bổ đề để biết thêm chi tiết) (1)
tam giác EAB vuông tại A
=> góc EBA + góc BEA = 90 (đl)
=> góc BEA = 90 - 30 = 60
góc BEA + góc BEC = 180 (kb)
=> góc BEC = 180 - 60 = 120
EB = EC (Gt) => tam giác EBC cân tại E (đn) => góc EBC = (180 - góc BEC) : 2 (đl)
=> góc EBC = (180 - 120) : 2 = 30 (2)
(1); (2); BE nằm giữa BA và BC
=> BE là phân giác của góc ABC (đn)
b, xét tam giác ABE và tam giác ADB có : AB chung
AE = AD (gt)
góc BAE = góc BAD = 90
=> tam giác ABE = tam giác ADB (2cgv)
=> góc ABE = góc ABD (đn)
mà góc ABE = 30
=> góc ABD = 60
có : góc ABD + góc ABE + góc EBC = góc CBD
góc ABD = góc ABE = góc EBC = 30
=> góc CBD = 30.3 = 90
=> BD _|_ BC (đn)
c, xét tam giác ECK và tam giác EBK có : EK chung
góc EKB = góc EKC = 90
EB = ED (gt)
=> tam giác EKC = tam giác EKB (ch - cgv)
=> KC = KB (đn)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
a:
Sửa đề: Chứng minh DE\(\perp\)BC
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
b: Sửa đề: F là giao điểm của AB và DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
adult pron