Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có
góc HAB=góc KHA
=>ΔAHB đồng dạng với ΔHKA
b: ΔAHB đồng dạng với ΔHKA
=>AH/HK=AB/HA
=>AH^2=HK*AB
c: Xét ΔCAM có KI//AM
nên KI/AM=CI/CM
Xét ΔCMB có IH//MB
nên IH/MB=CI/CM
=>KI/AM=IH/MB
mà AM=MB
nên KI=IH
=>I là trung điểm của KH
AI ghét MAi ANH thì kết bạn nha!
MK NÓI CHo CÁC BẠN BIẾT ĐINH THỊ MAI ANH LÀ NGƯỜI NHƯ THẾ NÀO:
+ MẬT DẠY,HAY CHỬI TỤC,NÓI BẬY
+ LUÔN ĐI CƯỚP NICK CỦA NGƯỜI KHÁC
+ NGƯỜI LỪA ĐẢO
+ LUÔN NÓI THÂN MẬT TRƯỚC NHỮNG NGƯỜI BÉ TUỔI
+.......................RẤT NHIỀU MK KO KỂ HẾT ĐC
Bạn vẽ hình nhé
a) TH đồng dạng: góc-góc
b) Tính BC (PYTHAGO)
Tính BH bằng cách tính diện tích tam giác vuông hoặc dùng tam giác đồng dạng.
KA/KH dùng tính chất phân giác.
c)Sao mình vẽ không đồng dạng nhỉ. Đề có sai không thế.
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=15^2+20^2=625\)
\(\Leftrightarrow\)\(BC=\sqrt{625}=25\)cm
\(\Delta ABC\)có \(BD\)là phân giác \(\widehat{ABC}\)
\(\Rightarrow\)\(\frac{AD}{AB}=\frac{DC}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{20}{15+25}=\frac{1}{2}\)
suy ra: \(\frac{AD}{AB}=\frac{1}{2}\) \(\Rightarrow\)\(AD=\frac{1}{2}AB=7,5\)
b) Xét \(\Delta AHB\)và \(\Delta CAB\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABH}\) CHUNG
suy ra: \(\Delta AHB~\Delta CAB\) (g,g)