Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao điểm của HA và DE
Kẻ DM, EN vuông góc với AH tại M và N
Xét tam giác vuông AEN và tam giác vuông ACH có:
AE=AC ( giả thiết)
\(\widehat{NAE}=\widehat{HCA}\)( cùng phụ góc HAC)
=> Tam giác AEN= Tam giác ACH
=> EN=AH (1)
Tương tự chứng minh được: Tam giác DAM= tam giác ABH
=> AH=DM (2)
Từ (1) và (2)
=> DM =NE (3)
Xét tam giác vuông DMK và tam giác vuông ENK có:
\(\widehat{DKM}=\widehat{EKN}\)
DM=NE ( theo (3))
=> Tam giác DMK=ENK
=> KD=KE
=> K là trung điểm DE
=> AH đi qua trung điểm DE
cô có thẻ giải thích 1 chút về cùng phụ góc HAC được ko ạ ?
a, xét tam giác DAB và tam giác DAE có : DA chung
góc BAD = góc EAD do AD là phân giác của góc BAC (gt)
góc ABC = góc DEA = 90 do ...
=> tam giác DAB = tam giác DAE (ch - gn)
=> AB = AE( đn)
b, gọi AD cắt BE tại O
xét tam giác OBA và tam giác OEA có : AO chung
góc BAD = góc EAD (câu a)
AB = AE (câu a)
=> tam giác OBA = tam igacs OEA (c - g - c)
=> góc BOA = góc EOA
mà góc BOA + góc EOA = 180 do kề bù
=> góc BOA = 90
=> AD _|_ BE (đn)
c, có góc ABC = 90
=> tam giác DBA vuông tại B (đn)
=> DA > AB (1)
AD là phân giác của góc BAC (gt)
=> góc DAC = 1/2 góc BAC mà góc BAC = 60 (GT)
=> góc DAC = 1/2.60 = 30
xét tam giác ABC vuông tại B (gt) => góc C + góc BAC = 90 (đl) mà góc BAC = 60 (gt) => góc C = 30
=> góc DAC = góc C
=> tam giác DAC cân tại D (đl)
=> DC = DA (đn) (2)
(1)(2) => DC > AB
a, xét 2 tam giác vuông BAD và EAD có:
AD cạnh chung
\(\widehat{BAD=\widehat{EAD}}\)(gt)
=> \(\Delta BAD=\Delta EAD\)(CH-GN)
=> AB=AE(2 cạnh tương ứng)
b, gọi O là giao điểm của AD và BE
xét t.giác OAB và t.giác OAE có:
OA cạnh chung
\(\widehat{OAB=\widehat{OAE}}\)(gt)
AB=AE(câu a)
=> t.giác OAB=t.giác OAE(c.g.c)
=> \(\widehat{AOB=\widehat{AOE}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{AOE}}\)=90 độ
=> AD\(\perp\)BE
c, xét t.giác ABC có: \(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180 độ
=> 60 độ + 90 độ + \(\widehat{C}\)=180 độ
=> \(\widehat{C}\)=30 độ(1)
mà AD là phân giác của \(\widehat{BAC}\)=> \(\widehat{CAD}\)=30 độ (2)
từ (1) và (2) suy ra tam giác ADC cân tại D
=> AD=DC(3)
trong tam giác vuông ADB có: AD>AB (cạnh huyền>cạnh góc vuông)(4)
từ (3) và (4) suy ra DC>AB
tu ve hinh :
tamgiac ACE vuong can tai A => AE = AC va goc EAC = 90 do (dn) (3)
tamgiac ABD vuong can tai A => AD = AB va goc BAD = 90 do (dn) (4)
goc EAC + goc CAB = goc EAB (1)
goc DAB + goc BAC = goc DAC (2)
(1)(2) => goc EAB = goc DAC (5)
(3)(4)(5) => tamgiac AEB = tamgiac ACD (c - g - c)
=> EB = CD (dn)