K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{BCD}=90^0-50^0=40^0\)

c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

BA=BH

Do đó: ΔBAD=ΔBHD

Suy ra: \(\widehat{BAD}=\widehat{BHD}=90^0\)

=>DH⊥BC

mà AE⊥BC

nên DH//AE

2 tháng 11 2019

a) Xét ΔAHB vuông tại H và ΔDBH vuông tại B có 

HB chung

AH=DB(gt)

Do đó: ΔAHB=ΔDBH(hai cạnh góc vuông)

b) Ta có: ΔAHB=ΔDBH(cmt)

nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)

mà \(\widehat{ABH}\) và \(\widehat{DHB}\) là hai góc ở vị trí so le trong

nên AB//HD(Dấu hiệu nhận biết hai đường thẳng song song)

c) Ta có: ΔAHB vuông tại H(AH\(\perp\)BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}=90^0-35^0=55^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}=90^0-55^0\)

hay \(\widehat{ABC}=35^0\)

Vậy: \(\widehat{ABC}=35^0\)

a) Xét tam giác AHB và tam giác DBH có:

AH=BD (giả thiết)

Góc AHB=góc DBH (=90o)

BH là cạnh chung

=> Tam giác AHB = tam giác DBH (c.g.c)

b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)

Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH

c) Tam giác ABH có: BAH^+AHB^+ABH^=180o (tổng 3 góc trong tam giác)

=>35o+90o+ABH^=180o⇒ABH^=180o−35o−90o=55o

Tam giác ABC có: BAC^+ACB^+ABC^=180o(tổng 3 góc trong tam giác)

=>

 Cho tam giác ABC có AB = AC, I là trung điểm của BC.a) Chứng minh AI vuông góc với BCb) Trên tia đối của tia IA lấy điểm D sao cho IA = ID, chứng minh AB = CDc) Trên một nửa mặt phẳng bờ là đường thẳng BC, không chứa điểm A, kẻ BE vuông góc với BC, BE = AI. O là trung điểm của BI, chứng minh A, O, E thẳng hàng.d) Biết góc BEI bằng 400 tính số đo góc ACB.Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là...
Đọc tiếp

 Cho tam giác ABC có AB = AC, I là trung điểm của BC.

a) Chứng minh AI vuông góc với BC

b) Trên tia đối của tia IA lấy điểm D sao cho IA = ID, chứng minh AB = CD

c) Trên một nửa mặt phẳng bờ là đường thẳng BC, không chứa điểm A, kẻ BE vuông góc với BC, BE = AI. O là trung điểm của BI, chứng minh A, O, E thẳng hàng.

d) Biết góc BEI bằng 400 tính số đo góc ACB.

Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là trung điểm của BC.

a)     Chứng minh AH là tia phân giác của góc BAC

 

b)    Vẽ HD vuông góc với AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Tính số đo góc AEH.

Gọi M là giao điểm của hai tia AB và DH. Đường thẳng qua M và song song với ED cắt tia AC tại N. Chứng minh N, H, E thẳng hàng.

Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là trung điểm của BC.

 

a)     Chứng minh AH là tia phân giác của góc BAC

 

b)    Vẽ HD vuông góc với AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Tính số đo góc AEH.

Gọi M là giao điểm của hai tia AB và DH. Đường thẳng qua M và song song với ED cắt tia AC tại N. Chứng minh N, H, E thẳng hàng.

0