K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: AB^2=BH*BC

=>BC=8^2/5=12,8(cm)

\(AC=\sqrt{BC^2-AB^2}=\dfrac{8\sqrt{39}}{5}\left(cm\right)\)

2:

a: Xét tứ giác AMHN có

góc AMH+góc ANH=90+90=180 độ

=>AMHN nội tiếp đường tròn đường kính AH

b: ΔHAC vuông tại H có HM là trung tuyến

nên AC=2HM

Xét ΔABC vuông tại A có AH là đường cao

nên CH*CB=CA^2

=>CH*CB=4HM^2

3: Xét ΔMAN vuông tại A và ΔMHN vuông tại H có

MN chung

MA=MH

=>ΔMAN=ΔMHN

=>AN=HN

=>góc NAH=góc NHA

góc NHA+góc NHB=90 độ

góc NAH+góc NBH=90 độ

mà góc NAH=góc NHA

nên góc NBH=góc NHB

=>NH=NB=NA

=>N là trung điểm của AB

22 tháng 8 2023

Bạn thịnh ơi bạn có cái hình không ạ

nếu có thì chụp cho mình với

 

10 tháng 11 2023

A B C H E F M N

a/

Ta có

\(\widehat{A}=90^o;\widehat{MHN}=90^o\) => A và H cùng nhìn MN dưới 1 góc vuông nên A; H thuộc đường tròn đường kính MN => A; M; H; N cùng thuộc 1 đường tròn

Xét tg vuông AHC có

\(MA=MC\Rightarrow HM=MA=MC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMH cân tại M \(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

 \(\widehat{NAH}+\widehat{MAH}=\widehat{A}=90^o\)

\(\widehat{NHA}+\widehat{MHA}=\widehat{MHN}=90^o\)

\(\Rightarrow\widehat{NAH}=\widehat{NHA}\) => tg NAH cân tại N => NA=HN (1)

Xét tg vuông ABH có

\(\widehat{NAH}+\widehat{B}=90^o\)

\(\widehat{NHA}+\widehat{NHB}=\widehat{AHB}=90^o\)

Mà \(\widehat{NAH}=\widehat{NHA}\) (cmt)

\(\Rightarrow\widehat{B}=\widehat{NHB}\) => tg BHN cân tại N => NB=HN (2)

Từ (1) và (2) => NA=NB => N là trung điểm AB

b/

Ta có

NA=NB (cmt); MA=MC (gt) => MN là đường trung bình của tg ABC

=> MN//BC

Gọi O là giao của MN với AH. Xét tg ABH có

MN//BC => NO//BH

NA=NB (cmt)

=> OA=OH (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) => O à trung điểm AH

Ta có

\(HE\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HE//AC => HE//AF

\(HF\perp AC\left(gt\right);AB\perp AC\left(gt\right)\) => HF//AB => HF//AN

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Gọi O' là giao của EF với AH => O'A=O'H (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AH

Mà O cũng là trung điểm của AH (cmt)

=> \(O'\equiv O\) => AH; MN; EF cùng đi qua O

 

 

 

8 tháng 6 2015

a/ Tính DE:

Trong tam giác ADH có : AE vừa là đường trung tuyến , vừa là đường cao => Tam giác ADE cân tại A => AD = AH

Trong tam giác vuông ABC có AH là đường cao => AH^2 = BH * CH = 4*9 = 36 => AH =6cm

mà AH = DE (cmt) => DE = 6cm 

b/cm : AD*AB = AE*AC:

theo mk , câu này bn ghi đề sai r , đề đúng là : cm: AD*AC = AE*BC

 

 

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

a: góc AHB=90 độ

=>H nằm trên đường tròn đường kính AB

góc AHC=90 độ

=>H nằm trên đường tròn đường kính AC

b: góc IHA=góc IBM

góc KHA=góc KCN

góc AMB=góc ANC-90 độ

=>góc IHK=góc IBM+góc KCN

=góc MBA+góc NCA

=180 độ-góc MAB-góc NAC
=90 độ

=>góc IHK+góc IAK=180 độ

=>A,H,I,K nội tiếp

c: góc HAK=góc HIK

góc IAH+góc HAK=90 độ

góc IAH=góc BMI

=>góc HIK=góc AMI

=>IK//MN