Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: E và M đối xứng với nhau qua D
=> DE = DM ; ME vuông góc AB
Ta có BD = DA ( D là trun điểm AB )
mà ME vuông góc AB ( cmt )
=> AB là trung trực của ME hay E và M đối xứng nhau qua D
b) Xét Tam giác ABC có:
M là trung điểm BC ( gt )
D là trung điểm AB ( gt)
=> DM là đường trung bình tam giác ABC
=> DM // AC; DM = 1/2AC
mà E thuộc DM
nên EM // AC
Xét tứ giác AEMC có:
EM // AC ( cmt)
EM = AC ( cùng = 2DM )
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành)
c) Xét tứ giác AEBM có:
ED = DM ( gt )
DB = AD ( gt )
=> Tứ giác AEBM là hình bình hành ( D/h 5 )
mà AB vuông góc EM
=> hbh AEBM là hình thoi ( D/h 3 )
d) Ta có : AM = 1/2BC ( trung tuyến ứng với cạnh huyền)
=> AM = 1/2 . BC = 1/2. 5 = 2,5 (cm)
Chu vi hình thoi AEBM:
2,5 . 4 =10 (cm)
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
Bài này dễ bạn tự vẽ hình nha
a) \(\widehat{BAC}=1v\)
\(\widehat{AIH}=1v\)\(\left(HI\perp AC\right)\)
\(\widehat{AKH}=1v\)\(\left(HK\perp AB\right)\)
\(\Rightarrow\)\(AIHK-hcn\)
b) \(AD=BD\left(gt\right)\)
\(DM=DN\left(gt\right)\)
\(\Rightarrow\)\(AMBN-hbh\) (1 )
\(AM=\frac{BC}{2}\)( vì AM là đường trung tuyến của tam giác ABC vuông tại A )
\(BM=\frac{BC}{2}\left(gt\right)\)
\(\Rightarrow\)\(AM=BM\) (2 )
Từ ( 1 ) và ( 2 ) suy ra AMBN là hình thoi
a) Tứ giác AIHK có: \(\widehat{HKA}=\widehat{KAI}=\widehat{AIH}=90^0\)
\(\Rightarrow\)\(AIHK\)là hình chữ nhật
b) N là điểm đối xứng với M qua D
\(\Rightarrow\)DN = DM
Tứ giác AMBN có: DA = DB; DN = DM
\(\Rightarrow\)AMBN là hình bình hành (1)
\(\Delta ABC\)có: MB = MC; DA = DB
\(\Rightarrow\)MD là dường trung bình
\(\Rightarrow\)MD // AC
mà AC \(\perp AB\)
nên MD \(\perp AB\) (2)
Từ (1) và (2) suy ra: AMBN là hình thoi