Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(ABC\) vuông tại \(A\)\(\Rightarrow\)\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(BC=\)\(\sqrt{AB^2+AC^2}\) \(=\)\(\sqrt{80^2+60^2}\)\(=100^2\)\(\Rightarrow\)\(BC=100cm\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{60^2}+\dfrac{1}{80^2}=\dfrac{1}{48^2}\Rightarrow AH=48\)
\(AI\) là tia phân giác của góc \(BAC\)\(\Rightarrow\)\(\dfrac{BI}{\text{CI }}=\dfrac{AB}{AC}=\dfrac{80}{60}=\dfrac{4}{3}\Rightarrow BI=\dfrac{4}{3}CI\)
Mà \(BI+CI=BC=100\)
\(\Rightarrow\)\(\dfrac{4}{3}CI+CI=100\Leftrightarrow\dfrac{7}{3}CI=\dfrac{300}{7}\)
\(\Rightarrow\)\(BI=BC-CI=100-\)\(\dfrac{300}{7}=\dfrac{400}{7}\)
b) Ta có Góc \(ACH + CAH = 90^o\)
Góc \(CAH + HAM = 90^o\)
\(\Rightarrow\)\(ACH=HAM\)
Xét \(Δ MAH\) và \(ΔNCH,\) có :
\(CHN=AHM(=45^o)\)
\(ACH=HAM\)
\(\Rightarrow\)\(ΔMAH\) đồng dạng vs \(ΔNCH\)
\(\Rightarrow\)\(\dfrac{CN}{AM}=\dfrac{CH}{AH}\)
a: Xet ΔBAC có CE/CB=CF/CA
nên EF//AB
=>EF vuông góc AC
Xét ΔABD vuông tai B và ΔMED vuông tại E có
góc BAD=góc EMD
=>ΔABD đồng dạngvới ΔMED
c: DC/AC=BD/AB
DE/ME=DB/AB
=>DC/AC=DE/ME
=>DC*ME=AC*DE
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
2: Xét ΔBAE vuông tại A và ΔBHI vuông tại H có
góc ABE=góc HBI
=>ΔBAE đồng dạng với ΔBHI
3: góc AEI=góc BEA=góc BIH
góc BIH=góc AIE
=>góc AEI=góc AIE
=>AE=AI