Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\widehat{C}=180^0-68^012'-34^044'=77^04'$
Áp dụng công thức: \(\frac{AC}{\sin B}=\frac{AB}{\sin C}\)
\(\Leftrightarrow \frac{AC}{\sin 34^044'}=\frac{117}{\sin 77^004'}\Rightarrow AC=68,4\)
Đáp án A.
kẻ đường cao AH vuông góc vs BC(H thuộc BC)
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=66,7\\ sinC=\dfrac{AH}{AC}\Rightarrow AC=68\)
=>đáp án A
a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)
=>\(\widehat{A}\simeq50^0\)
b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)
=>\(25+64-BC^2=40\)
=>\(BC^2=49\)
=>BC=7
Ta có: \(a = BC = 20;\;b = AC = 15;\;c = AB = 12.\)
a) Áp dụng định lí cosin trong tam giác ABC, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)
\( \Rightarrow \cos A = \frac{{{{15}^2} + {{12}^2} - {{20}^2}}}{{2.15.12}};\;\cos B = \frac{{{{20}^2} + {{12}^2} - {{15}^2}}}{{2.20.12}}\)
\( \Rightarrow \cos A = - \frac{{31}}{{360}};\;\cos B = \frac{{319}}{{480}}\)
\( \Rightarrow \widehat A = 94,{9^o};\;\widehat B = 48,{3^o}\)
\( \Rightarrow \widehat C = {180^o} - \left( {94,{9^o} + 48,{3^o}} \right) = 36,{8^o}\)
b)
Diện tích tam giác ABC là: \(S = \frac{1}{2}.bc.\sin A = \frac{1}{2}.15.12.\sin 94,{9^o} \approx 89,7.\)
Ta có: \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(40^0+60^0\right)=80^0\)
Áp dụng định lý sin vào △ABC có:
\(\dfrac{BC}{\sin A}=\dfrac{AB}{\sin C}\)
\(\Rightarrow BC=\dfrac{AB.\sin A}{\sin C}=\dfrac{5.\sin40}{\sin60}\approx3,26\)
\(C=180^0-\left(A+B\right)=77^04'\)
Áp dụng định lý hàm sin:
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{AB.sinB}{sinC}=\dfrac{117.sin34^044'}{sin77^04'}\approx68,4\)