Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
BN TỰ VẼ HÌNH NHA dương minh tuấn !!!!!!
a. BM // AC \(\Rightarrow\) \(\frac{AD}{DB}=\frac{AC}{MB}\)
\(\Rightarrow\frac{AD}{AD+DB}=\frac{AC}{AC+MB}\)
\(\Rightarrow\frac{AD}{AB}=\frac{AC}{AC+AB}\left(1\right)\)
\(CN\) // \(AB\Rightarrow\frac{AE}{EC}=\frac{AB}{CN}\Rightarrow\frac{AE}{AE+EC}=\frac{AB}{AB+CN}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AB}{AB+AC}\Rightarrow\frac{AE}{AB}=\frac{AC}{AC+AB}\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\frac{AD}{AB}=\frac{AE}{AB}\Rightarrow AD=AE\)
vì \(\widehat{BAC}=60^0\)
nên \(\Delta AED\) là tam giác đều
b. theo hướng chứng minh trên :
\(\frac{AD}{DB}=\frac{AC}{MB}=\frac{AC}{AB}\left(3\right)\)
\(\frac{AE}{EC}=\frac{AB}{CN}=\frac{AB}{AC}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{AD}{DB}=\frac{EC}{AE}\Rightarrow AD^2=DB.EC=4.9\)
\(AD=6\Rightarrow DE=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)
\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)
Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)
\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)
Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)
b)\(\text{Ta có:}\)
\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)
\(\Rightarrow AE=8cm,EC=10cm\)
bn ơi bài 1 ý a) chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a bài 2 nhá
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
giải câu a ra đi cậu