Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △ABI và △ADI
Có: AB = AD (gt)
^BAI = ^DAI (gt)
AI là cạnh chung
=> △ABI = △ADI (c.g.c)
=> IB = ID (2 cạnh tương ứng) và ^ABI = ^ADI (2 góc tương ứng) mà ^ABI = 2 . ^ACB => ^ADI = 2 . ^ACB => ^ADI = 2 . ^DCI
Xét △DIC có ADI là góc ngoài của tam giác tại đỉnh D
=> ^ADI = ^DIC + ^DCI => ^DIC + ^DCI = 2 . ^DCI => ^DIC = 2 . ^DCI - ^DCI = ^DCI
Xét △DIC có: ^DIC = ^DCI (cmt) => △DIC cân tại D => DI = DC mà IB = ID (cmt)
=> DC = IB
Ta có: AB + BI = AD + DC = AC (đpcm)
Gọi O à 1 điểm nằm trên đường trung trực của BC (O thuộc BC)
Xét \(\Delta ABM\)và \(\Delta OBM\)có
\(\widehat{ABM}=\widehat{MBO}\)(gt)
BM chung
\(\widehat{A}=\widehat{BOM}\)(=90o)
=> \(\Delta ABM\)=\(\Delta OBM\)(ch-gn)
=> \(\widehat{AMB}=\widehat{BMO}\)(cặp góc tương ứng)
Xét\(\Delta MBO\)và\(\Delta MCO\) có
MO chung
\(\widehat{MOB}=\widehat{MOC}\)(=900)
BO=OC
=> \(\Delta MBO\)=\(\Delta MCO\)(2cgv)
=>\(\widehat{BMO}=\widehat{CMO}\)(cgtư)
.=> \(\widehat{AMB}=\widehat{BMO}\)=\(\widehat{CMO}\)
mà \(\widehat{AMB}+\widehat{BMO}+\widehat{CMO}=180^o\)
=>\(\widehat{AMB}=\widehat{BMO}=\widehat{CMO}=60^0\)
=> \(\widehat{ACB}=90^{o^{ }}-60^0=30^0\)
tuwj vex hinhf nha
1 a. xét tam giác abc có
góc a + góc b + góc c = 180 độ
t/s vào tính đc góc b + góc c= 120 độ
góc acb = 120 độ : ( 2+1).1=40 độ
b) xét tam giác abc có
góc a + góc b + góc c = 180 độ
t/s vào tính đc góc abc = 80 độ
có bi là tia phân giác của góc abc
=> góc abi = góc ibc = 80 độ :2=40 độ
có ci là tia phân giác của góc acb
=> góc aci = gócicb = 40 độ : 2 = 20 độ
xét tam giác ibc có
góc bic + góc ibc + bci = 180độ
thay số vào tính đc góc bic = 120 đọ( nghĩ z chứ chưa tính kĩ nha )
2
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK
c: Xét ΔAIB có
AD vừa là đường cao, vừa là phân giác
=>ΔAIB cân tại A
=>IE là phân giác của góc BIA
a/ Xét tam giác DCA và tam giác DCI có:
DC chung
Góc A=I=90 độ
Góc ICD=ACD(phân giác góc C)
=> Tam giác DCA=tam giác DCI(ch-gn)
=> AC=CI( cạnh tương ứng)
a) Trong tam giác ABC có AB<AC
=>góc ACB< góc ABC
Có tam giác ABH vuông tại H
=>HAB+ABH=90 độ )
=>60 độ+ABH=90 độ
ABH=30 độ
b) AD là tia phân giác của góc A
=>EAI= IAB=60độ:2= 30 độ
Xét tam giác vuông BHA và tam giác vuông AIB có
Cạnh huyền AB chung
ABH=IAB=30 độ
=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)
c) Xét tam giác vuông AIE và tam giác vuông AIB có
Cạnh AI chung
EAI=IAB=30 độ
=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)
=>AE=AB ( 2 cạnh tương ứng)
=> Tam giác ABE là tam giác cân và có EAB=60 độ
=> Tam giác ABE là tam giác đều
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có
AB=AE
EAD=DAB=30 độ
Cạnh AD chung
=> tam giác ADB= tam giác ADC (c.g.c)
=> DB=DE (1) và góc ABD=góc AED
do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)
CBx>góc C ( CBx là góc ngoài của tam giác ABC)
=> CED>C, do đó DC>DE (2)
Từ (1) và (2) =>DC>DB