Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)gọi trung điểm của AB là H, của BC là I.
xét \(\Delta\) HBD và \(\Delta\) HAD có:
HB=HA
góc BHD= góc AHD=90độ
HD(chung)
suy ra 2 tam giac tren = nhau(c.g.c)
suy ra góc B=góc DAH\(\Rightarrow\) \(\Delta\) ABD là tam giác cân
chứng minh tương tự vs 2 tam giác EAI và ECI(c.g.c)
suy ra góc EAI= góc ECI\(\Rightarrow\) tam giác ACE là tam giác cân
câu b đợi tí mh nghĩ đã
m bị điên à tk 'nhóc quậy phá' ??? Đường trung trực của AB và AC cắt nhau tại I r mak m còn gọi trung điểm của BC là I

A B C D E F I
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

a, Ta có: Tam giác ABC cân tại A (gt)
=> góc ABC = góc ACB
=> 1/2 góc ABC = 1/2 góc ACB
=> góc IBC = góc ICB
=> Tam giác BIC cân tại I
b, Gọi M là giao điểm của AI với BC
Ta có tam giác BIC cân (câu a)
=> IB = IC ( cặp góc tương ứng )
Xét tam giác ABI và tam giác ACI:
AB = AC (gt)
góc ABI = góc ACI (c.m trên )
IB = IC (c.m trên )
=> Tam giác ABI = tam giác ACI (c.g.c)
=>góc BAI = góc CAI ( cặp góc tương ứng )
Xét tam giác BAM và tam giác CAM
góc BAI = góc CAI (c.m trên)
AB = AC (gt)
góc ABC = góc ACB (gt)
=> tam giác BAM = tam giác CAM (g.c.g)
=>BM = CM (cặp cạnh tương ứng) (1)
=>góc AMB = góc AMC (cặp góc tương ứng )
mà góc AMB + góc AMC = 180o (kề bù)
=> góc AMB = góc AMC = 180o / 2 = 90o (2)
Từ (1)(2) => AI trung trực BC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Ta có: ΔABE=ΔACF
nên BE=CF
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
CF=BE
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng