K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

a. Xét tam giác EAD và tam giác FAD có 

AED=AFD=90*

EAD=FAD(gt)

AD chung

=> tam giác EAD= tam giác FAD(ch-gn)

=> DE=DF( 2 cạnh t.ứ) và EDA=FDA( 2 góc t,ứ)

Ta có EDA=FDA=30*=>EDF=EDA+FDA=30*+30*=60*

b. Tam giác EAD=tam giác FAD(ch-gn=>AE=AF

Mà KE=FI => AE+EK=AF+FI => AK=AI

Xét tam giác AKD và tam giác AID

AK=AI; KAD=IAK; AD chung

=> tam giác AKD= tam giác AID(cgc)

=> DK=DI

c. Ta có BAC+CAM=180*( kề bù)

=> 120* + CAM=180* => CAM= 60*

Lại có AD//MC=> DAC=ACM= 1/2BAC= 60*

Xét tam giác ACM có ACM= CAM=60*=> tam giác ACM đều => ACM=CAM=AMC=60*

9 tháng 1 2016

this sentence extremely easy

9 tháng 1 2016

hahahahahahahahihihihihihihhehehehehehehehuhuhuhuhuhuhhhahahahahaahahahahahahahahahahahchchchchchchhchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdcjertfr8yvgrvcfhvrigy4olgth4786ty8n+tynyn4mj4m765u45ik87i547113jrghrhygutgeytfgryfeyftruyrrtgteyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddđ

 

 

 

 

 

 

 

 

uyuuu

 

 

 

cd

 

 

 

c

 

 

c

 

c

c

c

c

c

c

c

c

c

c

 

c

c

c

cc

c

c

c

c

c

c

c

c

c

c

c

c

 

c

c

c

c

cc

c

 

cc

c

c

c

c

c

 

c

c

cc

c

c

c

c

 

c

c

c

c

c

c

c

c

c

cc

 

c

cc

c

c

c

 

cc

c

 

cc

c

c

c

c

 

c

c

 

cc

 

c

c

18 tháng 7 2017

a) \(DE⊥AB\) (giả thiết)

\(\Rightarrow\widehat{DEA}=\widehat{DEK}=90\text{°}\) (định nghĩa)

\(\Rightarrow\Delta DEA\) vuông tại E (định nghĩa)

\(DF⊥AC\) (giả thiết)

\(\Rightarrow\widehat{DFA}=\widehat{DFI}=90\text{°}\) (định nghĩa)

\(\Rightarrow\Delta DFA\) vuông tại F (định nghĩa)

\(\Delta DEA\) vuông tại E và \(\Delta DFA\) vuông tại F có:

\(\widehat{DAE}=\widehat{DAF}\) (AD là phân giác \(\widehat{BAC}\))

AD chung

\(\Rightarrow\Delta DEA=\Delta DFA\) (cạnh huyền - góc nhọn)

\(\Rightarrow DE=DF\) (cặp cạnh tương ứng);

\(\widehat{EDA}=\widehat{FDA}\) (cặp góc tương ứng)

AD là phân giác \(\widehat{BAC}\) (giả thiết)

\(\Rightarrow\widehat{DAE}=\widehat{DAF}=\frac{\widehat{BAC}}{2}=\frac{120\text{°}}{2}=60\text{°}\) (định nghĩa)

\(\Delta DEA\) vuông tại E (chứng minh trên)

\(\Rightarrow\widehat{DAE}+\widehat{EDA}=90\text{°}\) (tính chất tam giác vuông)

\(60\text{°}+\widehat{EDA}=90\text{°}\)

\(\widehat{EDA}=30\text{°}\)

\(\widehat{EDA}=\widehat{FDA}\) (chứng minh trên)

\(\Rightarrow\widehat{FDA}=30\text{°}\)

\(\widehat{EDF}=\widehat{EDA}+\widehat{FDA}=30\text{°}+30\text{°}=60\text{°}\)

b) \(\Delta DEK\) và \(\Delta DFI\) có:

DE = DF (chứng minh a)

\(\widehat{DEK}=\widehat{DFI}\left(=90\text{°}\right)\)

EK = FI (giả thiết)

\(\Rightarrow\Delta DEK=\Delta DFI\left(c.g.c\right)\)

\(\Rightarrow DK=DI\) (cặp cạnh tương ứng)

c) \(\widehat{BAC}+\widehat{MAC}=180\text{°}\) (2 góc kề bù)

\(120\text{°}+\widehat{MAC}=180\text{°}\)

\(\widehat{MAC}=60\text{°}\)

CM // AD (giả thiết)

\(\Rightarrow\widehat{ACM}=\widehat{DAF}=60\text{°}\) (2 góc so le trong)

Xét \(\Delta AMC\) có: \(\widehat{MAC}+\widehat{ACM}+\widehat{CMA}=180\text{°}\) (tổng 3 góc trong một tam giác)

Thay số: \(60\text{°}+60\text{°}+\widehat{CMA}=180\text{°}\)

\(120\text{°}+\widehat{CMA}=180\text{°}\)

\(\widehat{CMA}=60\text{°}\)

d) Kẻ FG ∩ AD = {G} sao cho FG = AG

\(\Rightarrow\Delta FAG\) cân tại G (dấu hiệu nhận biết tam giác cân)

\(\widehat{DAF}=60\text{°}\) (chứng minh a)

\(\Rightarrow\Delta FAG\) đều (dấu hiệu nhận biết tam giác đều)

\(\Rightarrow\widehat{AFG}=60\text{°}\) (tính chất tam giác đều);

AF = FG = AG (định nghĩa tam giác đều) (1)

\(\widehat{AFG}+\widehat{DFG}=\widehat{DFA}\)

\(60\text{°}+\widehat{DFG}=90\text{°}\)

\(\widehat{DFG}=30\text{°}\)

\(\widehat{FDA}=30\text{°}\) (chứng minh a)

\(\Rightarrow\Delta DFG\) cân tại G (dấu hiệu nhận biết tam giác cân)

\(\Rightarrow DG=FG\) (định nghĩa tam giác cân) (2)

Từ (1) và (2) \(\Rightarrow AG=DG\)

\(G\in AD\)

\(\Rightarrow\) G là trung điểm AD (định nghĩa)

\(\Rightarrow AG=\frac{AD}{2}=\frac{4}{2}=2\left(cm\right)\)

mà AF = AG (chứng minh trên)

\(\Rightarrow AF=2cm\)

10 tháng 2 2018

phịch

31 tháng 1 2016

mk , ko biết

hỏi từ năm trước xong mốc meo không ai trả lời mới chán chớ..

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

20 tháng 3 2021

a, xét hai tam giác AED và AFD có:
góc AFD = góc AED (góc vuông)
góc EAD= góc FAD (AD là tia phân giác của góc A)
AD cạnh chung
nên tam giác vuông AED = tam giác vuông AFD ( cạnh huyền góc nhọn)
từ giả thiết trên
=> DE=DF
=> tam giác DEF là tam giác cân
Mà:
D là góc đối của góc A
DA là tia phân giác của A=120 độ
=> D= 60 độ Áp dụng tính chất tổng ba góc trong một tam giác ta có 180‐ 60 = 120 độ
DEF là tam giác cân nên góc E= góc F nên 120/2= 60 độ
Vậy góc D= E= F= 60 độ hay DEF là tam giác đều

b. Tam giác EAD=tam giác FAD(ch‐gn)
=>AE=AF
Mà KE=FI
=> AE+EK=AF+FI
=> AK=AI
Xét tam giác AKD và tam giác AID
AK=AI
KAD=IAK
AD chung
=> tam giác AKD= tam giác AID(cgc)
=> DK=DI
=> ΔDIK cân
=> đcpcm

c, Có:
^BAC + ^MAC = 180°
=> ^MAC = 180° - ^BAC
=> ^MAC = 180° - 120°
=> ^MAC = 60°
Lại có:
AD // MC
=> ^MCA = ^CAD = 60°
=> △ACM đều