Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)
mà BD+CD=28cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)
Do đó: BD=10,5cm; CD=17,5cm
Xét ΔBAC có
DE//AB
nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)
\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)
a: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
a: BC=căn 12^2+16^2=20cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC=3/4
=>BD/3=DC/4=(BD+DC)/(3+4)=20/7
=>BD=60/7cm; DC=80/7cm
Xét ΔCAB có ED//AB
nên ED/AB=CD/CB=4/7
=>ED/12=4/7
=>ED=48/7cm
b: S ABC=1/2*12*16=96cm2
BD/BC=3/7
=>S ABD/S ABC=3/7
=>S ABD=288/7cm2
AD là phân giác nên chia góc A làm A1 = A2 = 60 độ.
Theo định lí cos :
BC^2 = AB^2+AC^2 -- 2.AB.AC.cosBAC =63
=> BC= 3 căn 7
Theo tính chất của đường phân giác:
AB/AC = DB/DC
<=> AB/DB =AC/DC = (AB+AC)/(DB+DC) =9/( 3 căn 7)
ta có AB/DB=9/27 <=> 3/DB = 9/( 3 căn 7)
<=> DB = căn 7
áp dụng định lí cos vào tam giác ABD:
DB^2 = AB^2+AD^2--2.AB.AD.cos60
<=>7 = 9 + AD^2 --3.AD
<=>AD^2 -- 3AD +2 =0
<=>AD =2 hoặc AD =1
Thử lại với tam giác ADC:
+Nếu AD =1 thì :
DC^2 = AD^2 + AC^2 --2.AD.AC.cos60 = 31
=> DC = căn 31
mà DC + DB = BC = 3 căn 7 ( xấp xỉ 7.9)
căn 31 + căn 7 = 8.21 > BC
Vậy loại kết quả AD=1
+Nếu AD=2
DC^2 = AD^2 + AC^2 --2.AD.AC.cos60 = 28
=>DC =2 căn 7
DC + DB = 2 căn 7 + căn 7 = 3 căn 7 = BC ( đúng)
vậy nhận kết quã AD =2