Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.
A B C D E F K I
a,VÌ AD là p/g của ^A nên ^EAD = ^IAD = \(\frac{1}{2}\)^ EAI = \(\frac{1}{2}\cdot60^o=30^o\)
Xét tam giác vuông EAD và tam giác vuông IAD ta có: ^EAD = ^IAD ; chung AD
Nên tam giác vuông AED = tam giác vuông IAD (cạnh huỳen - góc nhọn)
do đó DE = DF (2 cạnh tương ứng) nên tam giác DEF cân tại D \(\left(1\right)\)
Do đó ^ADE = ^IDA =\(30^o\)mà ^EDI = ^ADE + ^IDA = \(30^o+30^o=60^o\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)-> tam giác DEF đều. (ĐPCM)
b, Xét tam giác vuông DEF và tam giác vuông DEI, ta có: DE = DF ; KE = FI
nên tam giác vuông DEF = tam giác vuông DEI (2 cạnh góc vuông)
do đó DK = DI (2 cạnh tương ứng)
Nên tam giác DKI cân tại D (ĐPCM)
hahahahahahahahihihihihihihhehehehehehehehuhuhuhuhuhuhhhahahahahaahahahahahahahahahahahchchchchchchhchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdcjertfr8yvgrvcfhvrigy4olgth4786ty8n+tynyn4mj4m765u45ik87i547113jrghrhygutgeytfgryfeyftruyrrtgteyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddđ
uyuuu
cd
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
c
cc
c
c
c
c
c
c
c
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
cc
c
c
c
cc
c
cc
c
c
c
c
c
c
cc
c
c
a: Xét ΔDEA vuông tại E và ΔDFA vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔDEA=ΔDFA
Suy ra: DE=DF
hay ΔDEF cân tại D
mà \(\widehat{FDE}=60^0\)
nên ΔDEF đều
b: Xét ΔADK và ΔADI có
AK=AI
\(\widehat{DAK}=\widehat{DAI}\)
AD chung
Do đó: ΔADK=ΔADI
Suy ra: DK=DI
giải:
a, xét hai tam giác AED và AFD có: góc AFD = góc AED (góc vuông)
góc EAD= góc FAD ( AD là tia phân giác của góc A)
AD cạnh chung nên tam giác vuông AED = tam giác vuông AFD ( cạnh huyền góc nhọn)
từ giả thiết trên => DE=DF => tam giác DEF là tam giác cân
D là góc đối của góc A, DA là tia phân giác của A=120 độ => D= 60 độ
Áp dụng tính chất tổng ba góc trong một tam giác ta có 180- 60 = 120 độ
DEF là tam giác cân nên góc E= góc F nên 120/2= 60 độ
Vậy góc D= E= F= 60 độ hay DEF là tam giác đều