Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : góc BEA =90 độ ( chắn nửa đt tâm O)
góc ADC = 90độ ( chắn nửa đt tâm O')
=> góc BEC = góc BDC
mà 2 góc này cùng nhìn cung BC
=> tgnt => B,C,D,E thuộc 1 đt
2/ta có góc BFA =90 ( chắn nửa đt tâm O)
=> BF vuông góc AF(1)
góc AFC =90(chắn nửa đt tâm O')
=>AF vuông góc CF(2)
(1)(2) => BF // CF
=> B, F,C thẳng hàng
ta có : tg BEAF nt => góc EBA = EFA(3)
tg ADCF nt => góc AFD = ACD(4)
tg BEDC nt => góc EBD = ECD(5)
từ (3)(4)(5)=> góc EFA =AFD
=> FA là p/g EFD
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
Xét (O) có
ΔAFC nội tiêp
AC là đường kính
Do đó: ΔAFC vuông tại F
Xét ΔHBA vuông tại B và ΔHFC vuông tại F có
góc BHA=góc FHC
DO đó: ΔHBA đồng dạng với ΔHFC
=>HB/HF=HA/HC
=>HB*HC=HF*HA
b: Kẻ EG vuông góc với DA
Xet tứ giác EDHA có
ED//HA
EA//HD
Do đó: EDHA là hình bình hành
=>EA=DH
=>ΔEAG=ΔHDB
=>AG=BD=2AB
=>B là trung điểm của AG
=>BG=GD
=>ΔEBD cân tại E