K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Ta có: \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{NAB}=\widehat{BAC}+\widehat{NAC}=\widehat{BAC}+90^0\)

Do đó: \(\widehat{MAC}=\widehat{NAB}\)

Xét ΔMAC và ΔBAN có

MA=BA

\(\widehat{MAC}=\widehat{BAN}\)

AC=AN

Do đó: ΔMAC=ΔBAN

b: Gọi H là giao điểm của CM và BN

Ta có: ΔMAC=ΔBAN

=>\(\widehat{ANB}=\widehat{ACM}\)

=>\(\widehat{ANH}=\widehat{ACH}\)

=>AHCM là tứ giác nội tiếp

=>\(\widehat{NHC}=\widehat{NAC}=90^0\)

=>NB\(\perp\)MC tại H

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

22 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.

a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.

Do đó ΔOMP = ΔOMN (c.c.c)

⇒ OA = OH nên OH = a.

Ta suy ra HM = AM và HN = BN.

b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:

HK // MM’ với K ∈ NM’.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .

c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)

1 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) AH ⊥ SB mà SB là giao tuyến của hai mặt phẳng vuông góc là (SBC) và (SAB) nên AH ⊥ (SBC).

c) Xét tam giác vuông SAB với đường cao AH ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

d) Vì OK ⊥ (SBC) mà AH ⊥ (SBC) nên OK // AH, ta có K thuộc CH.

OK = AH/2 = (a√6)/6.

5 tháng 9 2019

Giải bài 2 trang 113 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 113 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

9 tháng 12 2021

A B D C M N O

* Xét (DMN) và (ABD) có: 

+ (DMN) và (ABD) có điểm chung D.

+ M ∈ (ABD).

=> Giao tuyến của hai mp là MD.

Xét (DMN) và (BCD) có : 

+ (DMN) và (BCD) có điểm chung D.

+ MN cắt BC tại O nên O thộc 2 mp trên.

=> Giao tuyến hai mp là DO

 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc