Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: KI\(\perp\)BC(gt)
AH\(\perp\)BC(gt)
Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)
Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)
Ta có: ΔABK=ΔIBK(cmt)
nên KA=KI(hai cạnh tương ứng)
Xét ΔKAI có KA=KI(cmt)
nên ΔKAI cân tại K(Định nghĩa tam giác cân)
Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)
Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)
Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)
a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có
BK chung
\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))
Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)
a) Xét ∆ ABK và ∆IBK có:
+\(\widehat{ABK}=\widehat{KBI}\)(gt)
+BK chung
+\(\widehat{BAK}=\widehat{BIK}\left(=90^o\right)\)
\(\Rightarrow\)∆ABK=∆IBK(ch-gnhon)
b) Ta có: \(\left\{{}\begin{matrix}KI\perp BC\left(gt\right)\\AD\perp BC\left(gt\right)\end{matrix}\right.\)
Do đó: KI//AD
\(\Rightarrow\widehat{DAI}=\widehat{AIK}\)(2 góc SLT) (1)
Ta có ∆ABK=∆IBK(cmt)
nên KA=KI (2 cạnh tương ứng)
Xét ∆KAI cân tại K
\(\Rightarrow\widehat{KAI}=\widehat{KIA}\)(2 góc đáy) (2)
Từ (1) và (2)\(\Rightarrow\widehat{DAI}=\widehat{KAI}\Leftrightarrow\widehat{DAI}=\widehat{IAC}\)
=> AI là tia pgiac(đpcm)
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
bn tham khảo tại đây;
https://olm.vn/hoi-dap/detail/256733768368.html
a, xét tam giác ABK và tam giác IBK có : BK chung
góc CAB = góc KIB = 90 do....
góc IBK = góc KBA do BK là phân giác của góc ABC (gt)
=> tam giác ABK = tam giác IBK (ch - gn)
b, tam giác ABK = tam giác IBK (câu a)
=> KI = KA (đn)
xét tam giác KIC và tam giác KAH có : góc IKC = góc AKH (đối đỉnh)
góc KAH = góc KIC = 90 do...
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
CB = HB (câu b)
góc HMB = góc CMB = 90 do BM _|_ HC (gt)
=> tam giác BHM = tam giác BCM (ch - cgv)
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC (đn)
BK là phân giác của hóc ABC (gt)
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60 (em đoán vậy thôi :v)
Giải
a, Xét \(\Delta ABK\) và \(\Delta IBK\) có BK chung
\(\Rightarrow\widehat{CAB}=\widehat{KIB}=90^0\)
\(\Rightarrow\widehat{IBK}=\widehat{KBA}\)do BK là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\Delta ABK=\Delta IBK\)
b, \(\Rightarrow\Delta ABK=\Delta IBK\Leftrightarrow KI=KA\)
Xét \(\Delta KIC\) và \(\Delta KAH\) có \(\widehat{IKC}=\widehat{AKH}\) ( đối đỉnh )
góc KAH = góc KIC = 900
=> tam giác KIC = tam giác KAH (cgv - nhk)
=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)
=> CI + IB = HA + AB
=> CB = HB
=> tam giác CHB cân tại B (đn)
c, xét tam giác BHM và tam giác BCM có : MB chung
=> CB = HB
góc HMB = góc CMB = 90 do BM _|_ HC
=> tam giác BHM = tam giác BCM
=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH
=> BM là phân giác của góc ABC
BK là phân giác của hóc ABC
=> 3 điểm B; M; K thẳng hàng
d, góc B = 60