K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

a/ Tính DE:

Trong tam giác ADH có : AE vừa là đường trung tuyến , vừa là đường cao => Tam giác ADE cân tại A => AD = AH

Trong tam giác vuông ABC có AH là đường cao => AH^2 = BH * CH = 4*9 = 36 => AH =6cm

mà AH = DE (cmt) => DE = 6cm 

b/cm : AD*AB = AE*AC:

theo mk , câu này bn ghi đề sai r , đề đúng là : cm: AD*AC = AE*BC

 

 

22 tháng 6 2021

d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật

\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)

Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)

\(\Rightarrow MDEN\) là hình thang vuông

Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH 

\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)

Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH 

\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)

\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)

 

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi

17 tháng 6 2017

search : https://hoc24.vn/hoi-dap/question/56467.html

25 tháng 5 2017

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

30 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

9 tháng 9 2021

\(b,\) Gọi O là giao điểm ED và AH

\(\Rightarrow OA=OD=OE=OH\\ \Rightarrow\widehat{OEH}=\widehat{OHE}\\ \Rightarrow\widehat{NEH}=\widehat{NHE}\left(\widehat{OEH}+\widehat{NEH}=\widehat{NHE}+\widehat{OHE}=90\right)\\ \Rightarrow NE=EH\left(\Delta NEH.cân\right)\left(1\right)\)

Ta có \(\widehat{NEH}+\widehat{NEC}=90;\widehat{NHE}+\widehat{ECH}=90\Rightarrow\widehat{NEC}=\widehat{EHC}\)

\(\Rightarrow NE=NC\left(\Delta NEC.cân\right)\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow NC=NH\)

\(Cmtt\Leftrightarrow\Delta HMD;\Delta MDB.cân\Leftrightarrow MH=MB\left(=MD\right)\)

\(c,\) Xét tam giác HBD và CEH vuông tại E,D có \(DM=\dfrac{1}{2}HB=2\left(cm\right);EN=\dfrac{1}{2}CH=3\left(cm\right)\)

Áp dụng HTL vào tam giác ABC vuông tại A

\(AH^2=BH\cdot HC=4\cdot9=36\\ \Leftrightarrow AH=6\left(cm\right)\\ \Leftrightarrow DE=AH=6\left(cm\right)\left(hcn.AEHD\right)\)

\(S_{DENM}=\dfrac{1}{2}DE\cdot\left(MD+EN\right)=\dfrac{1}{2}\cdot6\cdot5=15\left(cm^2\right)\)

 

 

9 tháng 9 2021

undefined

undefined