Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
a. tám giác ABC có A=90, B=60 => C=30
trong 1 tam giác vuông, cạnh đối diện với góc 30 độ thì =1/2 cạnh huyền
=> 2AB=BC hay BC=12
áp dụng đlý pytago vào ABC, ta tính đc AC=\(6\sqrt{3}\)
b. tam giác ABC có BD là tia phân giác góc B =>\(\frac{AD}{DC}=\frac{AB}{BC}< =>\frac{AD}{AB}=\frac{DC}{BC}=>\frac{AD+DC}{AB+BC}=\frac{AC}{6+12}=\frac{6\sqrt{3}}{18}\)
=>\(\frac{AD}{AB}=\frac{6\sqrt{3}}{18}=>AD=\frac{6\sqrt{3}.6}{18}=2\sqrt{3}\)
áp dụng đlý pytago vào ABD => BD=\(4\sqrt{3}\)
Cách 1:
\(AC=\sqrt{BC^2-AB^2}=8\) cm
Từ D kẻ \(DH\perp BC\) tại H
Xét hai tam giác vuông DHB và DAB có:
\(\widehat{DBH}=\widehat{DBA}\) ( do BD là tia phân giác góc B)
BD chung
Nên \(\Delta DHB=\Delta DAB\left(ch-gn\right)\)
Suy ra \(HB=AB=6cm\Rightarrow HC=4cm\) và \(DH=DA\)
Áp dụng định lý pytago vào tam giác DHC vuông tại H có:
\(DC^2=4^2+DH^2\) \(\Leftrightarrow\left(AC-AD\right)^2=16+DA^2\)
\(\Leftrightarrow\left(8-AD\right)^2=16+AD^2\)
\(\Leftrightarrow AD=3\) \(\Rightarrow BD=\sqrt{AD^2+AB^2}=3\sqrt{5}\) cm
Cách 2:
\(\dfrac{DC}{DA}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\)\(\Leftrightarrow\dfrac{DC}{5}=\dfrac{DA}{3}=\dfrac{DC+DA}{5+3}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\Rightarrow DC=5,DA=3\)
Làm tương tự như trên
o. Tính BE
Có \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{EA}{EA+AC}=\dfrac{3}{5}\Leftrightarrow\dfrac{EA}{EA+8}=\dfrac{3}{5}\Leftrightarrow EA=12\)
\(BE=\sqrt{ED^2-BD^2}=\sqrt{\left(EA+AD\right)^2-BD^2}=6\sqrt{5}\) ( \(BE\perp BD\) do hai đường phân giác của hai góc kề bù)
Kết luận:...
a) Ta có: \(BH+HC=BC\)
\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)
\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)
\(\Leftrightarrow AH\cdot1,9=10\)
\(\Rightarrow AH=5,3\left(cm\right)\)
\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)
b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)
P/s: Các kết quả chỉ tương đối
xét tam giác abc vuông tại a ta có
\(\cos B=\)kề/huyền\(=\frac{AB}{BC}=\frac{9}{6}\)