Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Vì AD là phân giác của góc BAC nên theo tính chất của đường phân giác có :\(\frac{AB}{AC}=\frac{BD}{CD}\)
Mà AB = 6cm , AC = 8cm nên thay vào ta được : \(\frac{6}{8}=\frac{BD}{CD}hay\frac{BD}{6}=\frac{CD}{8}\)
Theo tính chất của dãy tỉ sỗ bằng nhau ta có :
\(\frac{BD}{6}=\frac{CD}{8}=\frac{BD+CD}{^{6+8}}=\frac{10,5}{14}=\frac{3}{4}\)
=> BD = (3.6):4 =4,5 cm và CD = 10,5 - 4,5 = 6cm
Vậy BD = 4,5cm ; CD = 6cm
Sorry , mình chưa nghĩ ra ý B .
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Trả lời :
a, Xét \(\Delta ABC\)có :
AB2 + AC2 = 62 + 82 = 36 + 64 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
=> \(\Delta ABC\)vuông tại A.
Iem học ngu hình nên chỉ làm được câu a, có gì thứ lỗi -_-
a, bn dựa vào định lý Ta- lét đảo để cm nha
b, Xét \(\Delta DEC\) và \(\Delta ABC\) có
\(\widehat{EDC}=\widehat{BAC}=90^o\)
\(\widehat{BCA}\): chung
=> \(\Delta EDC\) đồng dạng vs \(\Delta ABC\left(g.g\right)\)
c, Xét tam giác ABC có AD là tia tia giác góc BAC ta đc:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà BC + CD = BC
=> BC + CD = 10
=> BD = 10 : (3+4) x 3 = 30/7 (cm)
\(S_{ABC}=\frac{6\cdot8}{2}=24\left(cm^2\right)\)
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=8cm\)
Vì AD là pg nên \(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BC}{AB+AC}=\frac{10}{14}=\frac{5}{7}\Rightarrow BD=\frac{30}{7}cm;CD=\frac{40}{7}cm\)