Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đừng có tra mạng nhé ko có đâu, Mình là người tạo ra bài này

a: ΔCAB có AD là phân giác
nên BD/CD=BA/CA
b: BD/CD=BA/CA
mà BE=BD và CF=CD
nên BE/CF=BA/CA
c: Xét ΔBFE có BE/BA=CF/CA
nên BC//EF

A B C D E F Q R I P
Ta có: \(S_{PQR}=S_{CFP}\Rightarrow S_{PQR}+S_{QPC}=S_{CFP}+S_{QPC}\Rightarrow S_{QRC}=S_{QFC}\)(Tính chất diện tích miền đa giác)
Ta thấy: \(\Delta QRC\)và \(\Delta QFC\)có chung đáy QC mà chúng có diện tích bằng nhau.
Nên chiều cao hạ từ R & F của 2 tam giác này bằng nhau => Khoảng cách từ 2 điểm R & F đến QC bằng nhau
Hay RF // QC => Tứ giác QRFC là hình thang.
Xét hình thang QRFC: FQ giao CR tại P; QR giao CF tại A.
Theo Bổ đề Hình thang (Search Mạng) thì AP đi qua trung điểm của đáy CQ (điểm I) => QI=CI
Xét \(\Delta AQI\)và \(\Delta ACI\)có: QI=CI (cmt); chung chiều cao hạ từ A xuống 2 đáy QI; CI
\(\Rightarrow S_{AQI}=S_{ACI}\). Tương tự: \(S_{PQI}=S_{PCI}\)\(\Rightarrow S_{AQI}-S_{PQI}=S_{ACI}-S_{PCI}\Rightarrow S_{APQ}=S_{APC}\)
Hay \(S_{ARP}+S_{PQR}=S_{AFP}+S_{CFP}\). Mà \(S_{PQR}=S_{CFP}\Rightarrow S_{ARP}=S_{AFP}\)
Lại có: \(S_{ADR}=S_{CFP}\Rightarrow S_{ARP}+S_{ADR}=S_{AFP}+S_{CFP}\Rightarrow S_{APD}=S_{APC}\)
Do 2 tam giác APD và APC chung chiều cao hạ từ A xuống 2 đáy PD & PC và có S bằng nhau
Nên PD=PC. Xét \(\Delta BPD\)và \(\Delta BPC\): PD=PC, chung chiều cao hạ từ B xuống PD và PC
\(S_{BPD}=S_{BPC}\Rightarrow S_{BDRQ}+S_{PQR}=S_{CEQP}+S_{BEQ}\). Mà \(S_{PQR}=S_{BEQ}\Rightarrow S_{BDRQ}=S_{CEQP}\)
Hoàn toàn tương tự: \(S_{CEQP}=S_{AFPR}\). Từ đó ta có: \(S_{AFPR}=S_{BDRQ}=S_{CEQP}\)(đpcm).

A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)