K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

a. Ta chứng minh với \(a,b\ge0\) thì:

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) là bất đẳng thức đúng

Dấu "=" khi a = b

Áp dụng:

\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

Dấu = khi a = b

10 tháng 5 2019

cảm ơn bn nhìu nhayeu

9 tháng 8 2018

ở chỗ đề bài chữ Ai mik viết nhầm nhé chỗ ý là A1 nhé.

3 tháng 7 2018

a, Xét tam giác AIB và tam giác CID có;

AI = CI ( vì I là trung điểm AC)

BI = DI ( vì I là trung điểm BD)

góc AIB = góc DIC ( cặp góc đối đỉnh )

=> tam giác AIB = tam giác CID ( c.g.c) (đpcm)

b. Xét tứ giác ABCD có: hai đường chéo AC và BD cắt nhau tại trung điểm I của mỗi đường => ABCD là hình bình hành

=> AD = BC và AD // BC (đpcm)

c.Do ABCD là hình bình hành (cmt)

=> AB // DC

=>góc  DCA = góc BAC ( hai góc so le trong)

=> để CD vuông góc với AC thì góc DCA = 90o hay góc BAC = 90o hay tam giác ABC phải vuông tại A

Vậy điều kiện để  CD vuông góc với AC là tam giác ABC phải vuông tại A 

=))) Viết nhiều qué k cho mình nhe :333