Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta chứng minh với \(a,b\ge0\) thì:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) là bất đẳng thức đúng
Dấu "=" khi a = b
Áp dụng:
\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
Dấu = khi a = b
a, Xét tam giác AIB và tam giác CID có;
AI = CI ( vì I là trung điểm AC)
BI = DI ( vì I là trung điểm BD)
góc AIB = góc DIC ( cặp góc đối đỉnh )
=> tam giác AIB = tam giác CID ( c.g.c) (đpcm)
b. Xét tứ giác ABCD có: hai đường chéo AC và BD cắt nhau tại trung điểm I của mỗi đường => ABCD là hình bình hành
=> AD = BC và AD // BC (đpcm)
c.Do ABCD là hình bình hành (cmt)
=> AB // DC
=>góc DCA = góc BAC ( hai góc so le trong)
=> để CD vuông góc với AC thì góc DCA = 90o hay góc BAC = 90o hay tam giác ABC phải vuông tại A
Vậy điều kiện để CD vuông góc với AC là tam giác ABC phải vuông tại A
=))) Viết nhiều qué k cho mình nhe :333